MODELS FOR PARTICULATE MATTER IN USE IN EUROPE - A COST633 EXERCISE

¹Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal ²IUTA e.V. Bliersheimerstr. 60, 47229 Duisburg, Germany ³Institute of Earth Sciences "Jaume Almera", 08028 Barcelona, Spain ⁴ECN, P.O. Box 1, 1755ZG Petten, The Netherlands ⁵ARC systems research, 1220 Vienna, Austria

Department of Atmospheric Environment, National Environmental Research Institute, 4000 Roskilde, Denmark

Why to model PM?

Increased understanding of the health issues associated to elevated concentrations of particulate matter (PM) has made this one of the critical air pollution problems in Europe. Exceedance of thresholds has been reported by the majority of the EU member countries, mainly in urban agglomerations, where human exposure is also higher (EEA, 2005)

Air quality models simulate the transport and transformation of PM and their precursor compounds in the atmosphere. Thus they can provide important information on the relation between PM emissions and ambient air concentrations. Therefore, modelled PM concentration fields are a fundamental tool when exposure and health effects are under assessment and/or air quality management strategies should be defined.

Objective

The main objective of this work is to provide an overview of the application of PM models in European COST633 Action member countries, within Working Group 3 (Sources, Emissions, Modelling, Economic Aspects) activities.

The approach was mainly case-study oriented trying to summarise PM modelling application in each country. The resulting overview allows potential users of air quality models to understand which geographical areas have been covered already by extensive information.

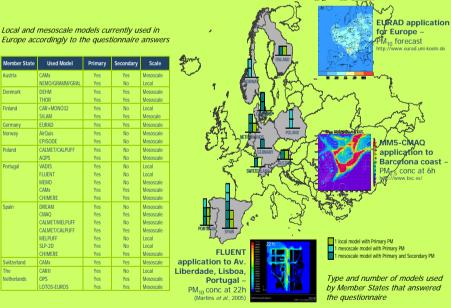
Methodology

Several models are already available and in use in European countries. A questionnaire was sent out to identify PM modelling work in a common usable framework.

This questionnaire was forwarded to Member States modellers. The collected information was compiled in a database.

	Answer Country	Casa Shudu	Model used	PM mo	odelling	Time	Spatial	Domoin	Validation	Contact	Available documents	Other Info
	Answer Country	case study	+ web page	Primary	Secondary	resolution	resolution	Domain	validation	Person	Available documents (papers, reports,)	Uther Thio
	Austría	ALAD										
ł												

Results


Ten member countries replied to the questionnaire reporting a total of 30 case studies applications.

Primary aerosols were simulated in all the case studies, whereas secondary aerosols were included in 50% of the cases, estimating not only PM₁₀, but also PM_{2.5} and SOA (secondary organic aerosol).

Several models were applied, in a total of 20, with different scopes and covering different modelling scales, from the local (only simulating primary PM) to the regional scale.

Validation work is associated to each reported case study.

Member State	Used Model	Primary	Secondary	Scale
Austria	CAMx	Yes	Yes	Mesoscale
	NEMO/GRAMM/GRAL	Yes	No	Local
Denmark	DEHM	Yes	Yes	Mesoscale
	THOR	Yes	Yes	Mesoscale
Finland	CAR+MONO32	Yes	No	Local
	SILAM	Yes	Yes	Mesocale
Germany	EURAD	Yes	Yes	Mesoscale
Norway	AirQuis	Yes	No	Mesoscale
	EPISODE	Yes	No	Mesoscale
Poland	CALMET/CALPUFF	Yes	No	Mesoscale
	AQPS	Yes	No	Mesoscale
Portugal	VADIS	Yes	No	Local
	FLUENT	Yes	No	Local
	MEMO	Yes	No	Mesoscale
	CAMx	Yes	Yes	Mesoscale
	CHIMERE	Yes	Yes	Mesoscale
Spain	DREAM	Yes	No	Mesoscale
	CMAQ	Yes	Yes	Mesoscale
	CALMET/MELPUFF	Yes	No	Mesoscale
	CALMET/CALPUFF	Yes	Yes	Mesoscale
	MELPUFF	Yes	No	Local
	SLP-2D	Yes	No	Local
	CHIMERE	Yes	Yes	Mesoscale
Switzerland	CAMx	Yes	Yes	Mesoscale
The	CARII	Yes	No	Local
Netherlands	OPS	Yes	Yes	Mesoscale
	LOTOS-EUROS	Yes	Yes	Mesoscale

Final Remarks

This overview work is limited to the COST633 member countries and to the individuals participating in the survey. Thus it includes national activities otherwise not available. International excercises like CITY-DELTA (Thunis and Cuvelier, 2004), or EUROTRAC-2 (Noone et al., 2002) are in general considered to be accessible anyway.

It allowed verifying that, in general, member countries are already simulating PM and using models as useful tools to air quality management, namely in what concerns the Air Quality Framework Directive. Modelling should also be regarded as a helpful tool for exposure assessment in the framework of epidemiological studies.

References

- European Environment Agency (2005) The European environment State and outlook 2005. State of Environment report No
- European Environment Agency (2005) The European Environment State and Outook 2005. State of Environment report no 1/2005. Copenhagen.
 Noone, K., Baltensperger, U., Flossman, A. et al. (2002) Towards cleaner air for Europe Science, Tools and Applications. Part 1. Chapter 5 Tropospheric aerosols and clouds (ed. P. Midgley, P. Builtjes, D. Fowler et al.).
 Martins, A.; Cerqueira, M.; Ferreira, F.; Borrego, C. and Amorim, J.H. (2005) Lisbon air quality evaluating traffic hot-spots. In 3rd International Symposium on Air Quality Management at Urban, Regional and Global Scales (AOM), 26-30 September,
- Istanbul, Turkey. Thunis, P. and Cuvelier, C. (2004) City-Delta: a European modelling intercomparison to predict air-quality in 2010. In Air Pollution Modelling and its Applications XVI (ed. C. Borrego and S. Incecik).

COST 633 International Conference 2006 Similarities and differences in airborne particulate matter, exposure and health effects over Europe

Acknowledgements

The authors would like to thank all the researchers who provided data for the questionnaires. This work was carried out under COST Action 633. The financial support of Calouste Gulbenkian Foundation for the grant of Joana Ferreira is gratefully acknowledged. The authors are also grateful to the Portuguese Foundation for Science and Technology and the European Social Fund, for the Structural Funds period between 2000-2006, for the project PAREXPO (POCI/AMB/57393/2004).