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Preface

This report summarises some of the results obtained during the project on Air Pollution
from Traffic, which was conducted in the frames of the Danish National Environmental
Research Programme 1992-1996, within the Centre of Air Pollution Processes and
Models. The project was managed by the Danish National Environmental Research
Institute and performed in co-operation with the Risg National Laboratory, the Road
Directorate and dk-Teknik.

The aim of the project was to obtain a more complete knowledge of air pollution from
traffic in urban areas, including not previously measured compounds, such as ozone,
volatile organic compounds (VOC) and other photochemical precursors.

The project included several measuring programmes, results from which were used for
detailed studies of air pollution processes and model development.

This report concerns mainly the subject related to modelling air pollution from traffic in
urban streets. A short overview is presented over the theoretical aspects and examples of
most commonly used methods and models are given. Flow and dispersion conditions in
street canyons are discussed and the presentation is substantiated with the analysis of the
experimental data. The main emphasis is on the modelling methods that are suitable for
routine applications and a more detailed presentation is given of the Operational Street
Pollution Model (OSPM), which was developed by the National Environmental Research
Institute. The model is used for surveillance of air pollution from traffic in Danish cities
and also for special air pollution studies.

The result obtained during the National Environmental Research Programme on Air
Pollution from traffic have substantially contributed to improvements of the OSPM and a
better understanding of the problems related to traffic pollution.






1 Introduction

Automobile transport is now an inherent part of our civilisation, and as it happened with
many other technological advancements, the negative aspects are becoming more and
more pronounced. One of them is air pollution from car exhaust gases. This pollution has
many adverse effects, whose manifestation and character varies depending on e.g. the
geographical scale in consideration. On the European scale, and even on the global scale,
the road traffic is known to be the major contributor to the anthropogenic emissions of the
"greenhouse" gas Carbon Dioxide (CO) and it is expected that these emissions will
continue to increase with the steadily increasing amount of traffic. On regiona scale, the
photochemical pollution, formation of smog episodes, are also to alarge extend attributed
to emissions from traffic. The most severe damaging effects related to pollution from
traffic can, however, be found in urban areas. It is here that the traffic density is largest
and concentrations of car exhaust gases are often orders of magnitude higher than in rural
areas. Urban areas can still not be considered as homogeneous entities; the largest
pollution levels occur in street canyons where dilution of car exhaust gasesis significantly
limited by the presence of buildings flanking the street.

Although, estimation of emissions is an essentia part of any study concerning air
pollution from traffic, this subject will not be treated here. The main focus is put on the
physical processes governing the pollution phenomena and especially on mathematical
description of pollution dispersion in urban streets.

Mathematica models which include relationships between emissions and concentration
levels are necessary for estimation of e.g. future trends in air quality or evaluation of
abatement strategies. There exist many such models, with varying levels of complexity,
and they have been used for air quality studies on scales ranging from global to single
industrial point sources (see e.q. Zannetti, 1990; Olesen and Mikkelsen, 1992). However,
the very special dispersion conditions in street canyons imply that the more traditiona
modelling methods are hardly applicablein this case.

The main features of pollution dispersion in street canyons and the available modelling
tools are discussed in this chapter. The reader should, however, not expect a thorough
review of street pollution models. The main emphasisis on applied methods which can be
used for routine evaluation and analyses of air pollution from traffic in streets, with a
focus on the use of the Danish model, the Operational Street Pollution Model (OSPM).
The principles behind this model, test results and also limitations of the model will be
discussed here.

A multidisciplinary project devoted to studies of air pollution from traffic in urban areas
was recently carried out in Denmark in the frames of the Danish Environmental Research
Programme, which was initiated in 1992/1993. Some of the project results will be
reported here, as they provide new and valuable information on behaviour of pollution in
urban streets.

The main characteristics of flow and dispersion conditions in street canyons derived from
measurements and model simulations are discussed in Section 2. A short review of
available pollution models is given in Section 3. Description of OSPM is presented in
Section 4, while results and comparison with measurements are discussed in Sections 5



and 6. Chemica transformations, especially regarding formation of nitrogen dioxide
(NOy), are discussed in Section 7. The treatment of this problem by OSPM is aso
described here. Finally, some unresolved problems and recommendations for future work
are presented and discussed in Section 8.



2 Wind flow in street canyons

The most characteristic feature of the street canyon wind flow is the formation of a wind
vortex so that the direction of the wind at street level is opposite to the flow above roof
level. The presence of a canyon vortex was already demonstrated by Albrecht (1933) and
later on verified by Georgii et al. (1967).

Unfortunately, direct field measurements of wind flow in street canyons are rare and
results are often not very conclusive. The main reason for thisis that as a rule, only few
point measurements of wind are usually available and even those can be significantly
influenced by very local structures. This makes it difficult to use such measurements for
determination of a full three dimensiona structure of the wind pattern. Some more
elaborated flow visualisation techniques are therefore applied. An example of such an
experiment is the work of DePaul and Sheih (1986). The mean wind velocities in a street
canyon were determined by analysis of trajectories of tracer balloons that were released in
the canyon and photographed in rapid sequence. The balloon trajectories showed the
formation of a vortex cell within the canyon, provided the ambient wind velocity exceeds
1.5-2.0 ms™. An important feature of the flow pattern, demonstrated in this experiment, is
that the vertical extent of the cell does not seem to extend beyond the roof level. Velocity
vectors at roof level appeared to be nearly paralle to the ambient wind.

Wind measurements in an urban canyon are reported by Nakamura and Oke (1988).
Horizontal wind speed and direction were measured both above and within the canyon.
One instrument was placed 3.6 m above the roof while the other was mounted 1 m above
the floor of the canyon at its midwidth. Their observations confirmed formation of a
canyon vortex when the flow was normal to the street axis. The wind direction at the
bottom of the canyon was approximately "a mirror reflection” of the above roof wind
direction. When roof level wind speeds exceed about 2 ms™?, the street level wind speed
was approximately 2/3 of the wind flow above roof top. This is in reasonable agreement
with the DePaul and Sheih (1986) observations.

Profiles of mean wind speeds and turbulence statistics in and above an urban street
canyon were recently presented by Rotach (1995). His observations indicate that the
profiles exhibit a strong dependence on atmospheric stability conditions.

2.1  Wind tunnel studies

The most extensive investigations of flow and dispersion regimes in street canyons are
performed in wind tunnels. Based on available wind tunnel data, especially the works of
Hussain and Lee (1980) and Hosker (1985), Oke (1988) provided a systematic classifica-
tion of flow regimes in urban street canyons. The flow types are characterised by three
regimes depending on the canyon geometry: isolated roughness flow, wake interference
flow and skimming flow. The canyon geometry is defined mainly by the ratio H/W, where
H is the average height of the canyon walls and W is the canyon width. The three flow
regimes are illustrated in Figure 2.1. For widely spaced buildings (H/W < 0.3), the flow
fields associated with the buildings do not interact, which results in the isolated roughness
flow regime. At closer spacing (0.3 < H/W < 0.7) the wake created by the upwind building



is disturbed by the downwind building creating a downward flow aong the windward face
of this building. This is the wake interference flow. Even closer spacing results in the
skimming flow regime. In this case a stable circulatory vortex is established in the canyon
and the ambient flow is decoupled from the street flow.

Severa studies have been undertaken to verify or quantify more precisely the threshold
H/W ratios for transition between the different flow regimes. Hunter et al., (1991, 1992)
have estimated flow regimes in street canyons of varying geometry using a numerical flow
model. Their results agreed very well considering transition between wake interference
skimming flow regimes but for transition to the isolated roughness flow regime in long
canyons they found a H/W ratio significantly smaller than that estimated by Oke (1988).
The classification of flow regimes, provided by Oke (1988), should be considered only as
a qualitative one. Caution must be taken when wind tunnel results are extrapolated to
"real life" conditions.
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Figure 2.1 Flow regimes associated with different canyon H/W ratios (after Oke, 1988).

2.2 Tracer dispersion experiments

Works by Hoydysh and Chiu (1971), Jacko (1972), Hoydysh et al. (1974), Wedding et al.
(1977), Kennedy and Kent (1977), Hussain and Lee (1980), have shown the influence of
the street geometry on dispersion conditions. A series of wind tunnel experiments for
different street geometries was reported by Builtjes (1983, 1984).

One of the most systematic investigations of dispersion characteristics in a wind tunnel
model of urban streets was performed by Hoydysh and Dabberdt (1988) using tracer gas
and flow visualisation techniques. Three different canyon configurations were considered
in this study: aregular long street canyon with equally high buildings on both sides of the
street (equal notch configuration); a canyon with the height of the upwind building twice
the downwind building (step-down notch) and a canyon with the downwind building
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height equal 1.5 upwind building height (step-up notch). Across-street concentration
gradients and the vertical profiles were measured for various wind angles. The results of
this investigation have confirmed some previous research findings and also provided
several new insights. The vertical concentration profiles were well approximated by an
exponential function with the maximum at street level. For cross street wind directions the
concentration levels were generally a factor of two or more greater for the leeward than
the windward side, except for the step-down notch where windward concentrations were
dightly greater than the leeward concentrations. For the even notch configuration the
street level concentrations on the windward side exhibited significant variation with wind
direction. A local maximum was observed for perpendicular wind directions, a shallow
minimum for wind direction around 45° and a subsequent increase of concentrations for
wind angles approaching paralel directions. A later study by Dabberdt and Hoydysh
(1991) confirmed these findings.

Wind flow characteristics for wind angles perpendicular to the street axis were observed
with the aid of neutrally-buoyant helium-filled soap bubbles whose trgectories were
traced to determine wind velocities in the canyon. Most trajectories were nearly circular or
eliptical and extended throughout the depth of the canyon. For the even notch configura-
tion the average circumferentia velocity was about one-fourth of the ambient wind speed.
In the case of the step-up notch, the effective circumferential velocity was about one-half
of the ambient wind speed.

The information inferred from wind tunnel experiments is a very useful aid for develop-
ment of mathematical models.

2.3 Wind flow modelling

The basic equations used for description of the mean flow are (Busch, 1973, Rodi, 1995):
the continuity equation:

ou.
— = 21
ox (2.2)
and the steady state momentum conservation equation:
g ou = 9 va“i-u;u’j (L9P. ioq03 (2.2)

where

U arethethree mean velocity components (i=1,2,3 or X,y,2),

u; are the turbulent fluctuation components (deviations from the mean velocity); the
overbar means time averaging,

p isthepressure,

p istheair density,

v isthe kinematic molecular viscosity.

In (2.1) and (2.2) as well as in the subsequent equations, the summation convention of
repeated indicesisimplied.
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The left-hand-side of (2.2) describes advection of mean momentum, while the right-hand-
side represents the diffusion and pressure forces. Equation (2.2) cannot be solved directly

as it contains new unknowns, the Reynolds stresses, u;u; . The key problem is to define
an appropriate parameterization of these stresses - the "closure concept”.

Two main categories of modelling concepts have evolved: the eddy-viscosity concept,
caled also first order closure method, and higher order closure methods involving
additional model equations for Reynolds stresses. The latter method is widely used in
modelling atmospheric flows (Launder, 1989) but so far has not found a broader
application for street canyon flows.

The eddy-viscosity concept assumes that in analogy to molecular diffusion the turbulent
stresses are proportiona to the local velocity gradients, which leads to the following
relation:

- ou. ou,
uu, = -v{i+—1} (2.3

where v; is the eddy-viscosity which now needs to be parameterized.

The eddy-viscosity concept is mainly based on the assumption that
v, o« UL (2.49)

where 0 and L are some appropriate velocity and length scales, specific for the particular
flow. The eddy-viscosity should actually be a tensor but in the most engineering applica-
tions a scalar formulation is used.

The problem is common for all turbulent flows but treatment of street canyon flows
implies specific boundary and initial conditions. Of special interest is here the situation
occurring when wind blows perpendicularly to an infinitely long canyon of width W and
height H. The wind flow can thus be considered as two-dimensional. Assuming further-
more that the eddy-viscosity is a constant and neglecting the molecular viscosity terms,
the simplified transport equations can be written,

2 2
au_Waquvt(a u,a uj 10p _ 2.5)
oX 0z ox* 07Z°) pox

-u

oW  ow (azw azw) 10p
u tw|l TSt o
OX 0z ox? 0z°) poz

The cross canyon (x-direction) velocity component is denoted by u and the vertical (z-
direction) component is w. Equations (2.5) and (2.6) can be written in a more convenient
form using the concept of vorticity,

=0 (2.6)

0z OX
2 2
_ua_CO_Wa_CO+ Vt(6®+80&j =0 (28)
oX 0z ox2  0z2
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For a vortex-like flows in street canyons it is reasonable to assume that advection of
vorticity issmall and in this case (2.8) is thus reduced to,
oo P
0x2 0z

=0 (2.9)

Hotchkiss and Harlow (1973) found that a suitable solution for this equation is (a sign
error appears in the original report)

o = oo(e¥+pev)sin(kx) (2.10)

The expression for the street canyon velocity components satisfying free-slip boundary
conditions for aong-walls and canyon bottom components and vanishing normal
components, reads,

u= %[e“y(1+ ky)-Be"‘y(l-ky)]sin(kx) (2.11)
w = -Ay[e¥ - B e*]cos(kx) (2.12)
where
k = % y =z-H
— . 2kH _ ku
B=¢€ A= 1B

H is the height and W is the width of the street, while u, is the wind speed above the
canyon (the point x=W/2, z=H)

The wind field calculated by (2.11) and (2.12) is shown in Figure 2.2 for canyons with
three different H/W ratios. Wind velocities are normalised with respect to u.

The Hotchkiss and Harlow model, although being very simplified, reflects the basic
properties of wind circulation in street canyons. Comparison with wind measurementsin a
street with H/W ratio close to one, presented by Yamartino and Wiegand (1986), shows
some reasonable agreement. Caution must be shown using the Hotchkiss and Harlow
model for other canyon configurations. Referring to the aforementioned work by Oke
(1988), the wind flow model by Hotchkiss and Harlow describes only the skimming flow
regime and is not suitable for canyons with H/W ratio significantly different from one. It
should also be noted that the expression (2.10) for the vorticity field is not a unique
solution of the equation (2.9). Any linear combination of terms like (2.10), with k being a
multiple of B/W, will satisfy (2.9). The same conclusion is due to the wind field expres-
sions (2.11) and (2.12). The coefficients of the linear combination terms can be cal culated
requiring appropriate boundary conditions for the top-canyon profile of the u-component.
This may result in a more realistic formulation of the wind field for wider canyons. The
limitations of the analytical solution proposed by Hotchkiss and Harlow (1973) are,
however, still determined by the simplified assumptions about constant eddy viscosity,
neglecting of the advection terms and aso the free-dlip boundary conditions. More
sophisticated numerical modelling methods must be used in order to avoid these simplifi-
cations.
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Figure 2.2 Wind flow in street canyons according to Hotchkiss and Harlow (1973) analytical solution.
a) W/H

canyons and also in the case of other obstacles is the so called 4-€ method (Rodi, 1995).

The method which found the most wide application in modelling flow conditions in street
The velocity and length scales are here determined by the turbulent kinetic energy:

(2.13)

and the rate of dissipation of the turbulent kinetic energy:

(2.14)

The eddy-viscosity is modelled by:

(2.15)

where ¢, isan empirical proportionality constant.
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Beside the momentum conservation equation (2.2), two additional equations are needed to
specify v¢ in (2.15): an equation for the turbulent kinetic energy, &, and an equation for the
dissipation rate, €,. The rather lengthy derivation of these equations will not be discussed
in detail here. They are obtained from (2.2), and after some manipulation, and parameter-
ization and introduction of three new constants additional to v;, these equations now
describe the spatial variations of £ and . Combining these equations with (2.1), (2.2),
(2.3) and (2.15) yields a closed set of equations, that can be solved numerically.

The k-€ model has been extensively tested and calibrated for industrial flows around bluff
bodies and structures. The tests have focused on regions where flow separation can occur,
which is aso an important property of the flow in and around street canyons. The
constants in the models have been determined from experimental data, considering basic
universal flows, and afterwards improved by experimental modelling.

Most of the constants are found to have very similar values for industrial and tunnel flows
and for atmospheric flows. The one exhibiting the largest difference is the constant c., that
typically varies from 0.09 for industria flowsto 0.03 for atmospheric flows. An important
reason for non-universality of the constants in the k- model is that the model is not afirst
principle turbulence closure model, but entails several assumptions and approximations
that may result in different coefficients, when important aspects of the flows are different.
An important difference between industrial and atmospheric flows is the much larger
length-scale interval available to atmospheric flows, which means that for the same
dissipation and turbulence stress, the turbulent kinetic energy will usually be much larger
in the atmosphere, than in a tunnel simulation. Through (2.3) and (2.15) this is seen to
yield correspondingly smaller c. for atmospheric flows. The implications of this are not
completely understood athough the consequences of trying the models with both
coefficients often seem small.

Results of wind flow simulations in street canyons by a k- model developed at the Risg
National Laboratory (Sorensen et al., 1994, Sorensen, 1995) are shown in Figure 2.3 for
similar conditions as in Figure 2.2. The k- model makes larger demands on boundary
conditions than does the simple model by Hotchkiss and Harlow (1973) and therefore the
results are not exactly comparable. Nevertheless, the similarities and differences are
worthwhile to notice.

The wind flows given by (2.11) and (2.12) and depicted in Figure 2.2 are all simple and
similar. There is only one dominating rotor with a kernel in the centre of the canyon,
regardless of the W/H ratio. Although the flows depicted by the k- model are superfi-
cially similar to the ones shown in Figure 2.2, a number of important differences become
clear upon closer inspection. The centre of the rotor is seen to be displaced towards the
windward side of the street, and is moving from a rather elevated position for a narrow
street down closer to the bottom for a wider street. Finally, secondary vortices are clearly
seen in the bottom corners of the street, most clearly in the leeward corner, but for the
W/H=1, also in the windward corner. For W/H =2, the windward secondary eddy seems to
be overwhelmed by the primary eddy. Furthermore, the simple analytical model does not
describe the influence of the canyon geometry on flow conditions above the canyon. The
feed back between the canyon flow and the flow aloft is apparent from the results
presented in Figure 2.3, although both models predict essentially parallel wind flows at
the top of the canyon. Coupling between the canyon flow and the flow aloft allows for
estimation of the fluxes between the canyon and the air above.

15
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Figure 2.3. Wind flow in street canyons calculated by a k- model (Sgrensen, 1995). a) W/H=2,
b) W/H=1, c¢) W/H=0.5

It can be concluded that the larger efforts of running a k- model are paid back by the
additional important information about the flow provided by the model. However, more
efforts are needed to implement the results of the model in street pollution modelling.
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3 Dispersion modelling

Modelling dispersion of pollutants in streets is inevitably connected with wind flow
modelling. The mathematical principles are basically the same, i.e. the governing equation
IS the steady state mass conservation equation for a scalar,

U—r =-—c u, + S (3.2

where ¢ denotes the mean concentration and ¢’ is the deviation from the mean value. S
represents here all possible sources and sink terms, as e.g. emission or chemical reactions.

The key problem is again determining the parameterization of the turbulent flux term

C u; and the most common approach is based on the eddy diffusivity concept,
cu, = - Ktﬁ
0X;
where K; is the eddy diffusivity coefficient, usually assumed to be equa to the eddy
Viscosity .

(32)

The mean wind fields and diffusivity coefficients can be supplied by a particular flow
model and equation (3.1) solved numerically subject to appropriate boundary conditions.
Modern numerical methods and availability of powerful computers have resulted in
several such models which have been developed. The diffusivity coefficients are
estimated either making use of the mixing length concept (Sievers and Zdunkowski, 1986,
Moriguchi and Uehara, 1993; Lee and Park, 1994, Kamenetsky and Vieru, 1995) or the
k-, method (Johnson and Hunter, 1995, Mestayer and Anquetin, 1994).

Another approach is based on the stochastic Lagrangian trgjectory model (Lamb et al.,
1985). Concentrations of pollutants are calculated tracing the movement of particles
representing air parcels. The trajectories are calculated using the mean flow fields on
which a random fluctuation component is superimposed. The statistics of the fluctuating
component depend on the turbulence characteristics of the flow field and can be supplied
by the flow model. The stochastic Lagrangian approach permits one to avoid using the
diffusivity "closure" (3.2) for modelling dispersion. The eddy diffusivity approach is
known to be applicable only when the scale of the turbulent motions is much smaller than
the scale of pollution distribution (Pasquill and Smith, 1983). This might not be the case
In street canyons where both scales are of a comparable size and limited by the canyon
dimensions. Some examples of stochastic modelling of traffic pollution can be found in
Lamb et al. (1979), Geomet (1985), Schorling (1994) and Lanzani and Tamponi (1995).

Numerical models based on solution of the diffusivity equation (3.1) or stochastic models
with the corresponding wind flow models are still too complex for practical applications,
e.g. in support of air pollution management. As research tools they can, however, provide
significant insight into the essential processes and results used for constructing more
simple models. The models in question here are basically parameterized semi-empirical
models making use of a priori assumptions about the flow and dispersion conditions and
limitations of such an approach must certainly be recognised. Anyhow, it is this kind of
modelling that until now has found the broadest application. Some of the more commonly
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used models will be discussed in the following. The Danish model OSPM, which will be
presented in more detail, belongs to this category of parameterized models.

3.1 Some applied street pollution models

3.1.1 The STREET model

One of the earliest street pollution modelsisthe STREET model by Johnson et al. (1973),
(see also Ludwig and Dabberdt, 1972; Dabberdt et al., 1973). The model is empirically
derived based on pollution measurements in streets of San Jose and St. Louis. The model
assumes that emissions from the local street traffic (street contribution cg) are added to the
pollution present in the air that enters from roof level (background contribution cy).

C= C,+C, (3.3

The street contribution is proportional to the local street emissions Q (gm's?) and
inversely proportional to the roof-level wind speed u. For winds blowing at an angle of
more than 30° to the street direction, two formulas are derived:

for the leeward side,

o=~y 9 (34)

ut U, T+ 22) %+ hdl

for the windward side,
K H-z :
Cs = Hzs-Q (3.5
(utu,) H W

where

K isan empirically determined constant (K=7),

us accounts for the mechanically induced air movement caused by traffic (us=0.5 ms™?),
ho accounts for initial mixing of pollutants (h,=2 m)

Xj and z are the horizontal and the vertical distances from the i-th traffic lane to the
receptor point,

Qi isthe emission strength of thei-th traffic lane,

H and W are the height and the width of the canyon, respectively.

For wind directions at angles less than 30° to the street direction, the average of (3.4) and
(3.5) isrecommended but actualy, the model is not designed for this condition.

The formulas (3.4) and (3.5) are based on the observations that when the roof-level wind
blows within about +60° of the cross-street direction, a helical circulation develops in the
street. This causes the pollutants emitted from traffic in the street to be primarily
transported towards the upwind building (lee-side) while the downwind side is primarily
exposed to background pollution and pollution that has recirculated in the street. The
model predicts thus that the concentrations on the leeward side of the street are higher
than on the windward side. These are the most essential features of pollutant dispersion in
street canyons and therefore the STREET model, with some minor modifications (Benesh,
1978; Sobottka and Leisen, 1980a,b), is still widely used, especially for engineering
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applications. The more detailed features of pollution dispersion in street canyons can,
however, not be described by such asimplified model as STREET. An essential drawback
of the model is the very crude parameterization of wind direction dependence. Further-
more, at reduced ambient wind speeds (calm conditions), a uniform concentration
distribution is expected across the street-canyon. The STREET-model does not describe
this feature and actually it is not recommended for ambient wind speeds less than 1 ms*
(although it is frequently used for evaluation of "worst-case” pollution levels which
usually are associated with low wind speed conditions). In spite of these limitations, the
model is auseful tool for a"first-order" evaluation of air quality in street-canyons.

3.1.2 Hotchkiss and Harlow model

Another analytical model was proposed by Hotchkiss and Harlow (1973). This model is
based on an approximate solution of the two-dimensional steady state advection-diffusion
equation

2 2
uac 8c+ Vt[ac+acj _ 0 (36)

OX 0z ox2 0z2

and the previously mentioned wind field model (Egs. (2.11) and (2.12)).

The expression for the concentration field in atwo dimensional street canyon, which they
derive keeping only terms up to afirst order in expansion in series of cos(kx), reads:

u, Vv,| 4kvz(1-p)

1 S-un-

c, = {—-l}-”—y[ekya- )-Be(A+ky)cos)  (37)
where S=Q/W is the emission density, which is assumed to be uniform across the street.
U, is the component of the wind speed at canyon top normal to the canyon axis, while all
the other terms have the same meaning as explained in connection with Egs. (2.11) and
(2.12).

Hotchkiss and Harlow (1973) proposed to model the eddy diffusivity, vi, using expression
(2.4), where the turbulence velocity scale is related to the wind speed at the top of the
canyon, W, and the stirring speed, us, due to vehicle motion (traffic induced turbulence),

Vi = I—\/ (o, Uy )2 + usz (3.8)
where L is an appropriate length scale, and which they suggest to set equal to the canyon
width, W.

For the canyon ventilation velocity, u,, which determines the concentrations at the top of
the canyon, Hotchkiss and Harlow (1973) propose,

One could, however, reason that a more consistent formulation should be based on the
previously defined turbulence velocity scales, u; and us,
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e = (0t )+ (ot )’ (3.10)

where the proportionality constants, o, and oz, as well as oy, require empirical determina-
tion.

The Hotchkiss and Harlow’s model was originally derived for wind flow perpendicular to
the street canyon only, but it is easy to reformulate the model to be valid for any wind
direction making the substitution,

u, = u,-sin(®) (3.11)

n

where @ is the angle between wind direction above roof level and the street axis.

The Hotchkiss and Harlow’s analytical model has some qualitative properties that were
missing in the STREET model. The difference between the leeward and windward side
concentrations is determined by the term with cos(kx) in Eq. (3.7). For vanishing wind
speeds (u,=0) this term vanishes too, resulting thus in an uniform concentration distribu-
tion across the canyon. This behaviour is expected from physical reasoning. The quantita-
tive behaviour of the model is examined in Figures 3.1 and 3.2. The empirical constants,
o1 and ayp, are given values 0.1 and 0.3, respectively, and the W/H ratio is set to 1.
Comparison is made with the even notch configuration wind tunnel data of Hoydysh and
Dabberdt (1988). For this purpose the calculations with the Hotchkiss and Harlow model
are made with the steering velocity, us, set to zero and the concentrations are normalised
with respect to the wind speed and emission density. Corresponding results are also
shown for the STREET model, where both us and h, are set to zero. The dependence on
wind direction of street level concentrations is shown in Figure 3.1. The wind direction is
with respect to the street axis, i.e. 0° and 180° correspond to wind parallel to the street
axis. Presenting the wind tunnel data, symmetry of the concentration distribution with
respect to wind direction normal to the street (90° and 270°) was anticipated.

Due to the rather arbitrary choice of the values of the empirical constants and somewhat
unclear definition of the source strength in Hoydysh and Dabberdt (1988), not much
attention should be given to the absolute concentration values, but it is noticeable that
neither the analytical model, nor the STREET model can reproduce the large difference
between the leeward and windward concentrations shown by the wind tunnel data. As
noted by Hotchkiss and Harlow (1973), the analytical expression derived by them, due to
the anticipated approximations, is not valid if the cross-canyon concentration difference is
larger than about a factor of two. The STREET model produces leeward concentrations,
which are exactly twice the windward concentrations.

The vertical concentration profiles for wind direction normal to the street are shown in
Figure 3.2. Here it is again obvious that both models predict much stronger vertical
gradients than observed from the wind tunnel measurements.

One important difference is worth to notice when comparing the empirical STREET
model and the analytical model by Hotchkiss and Harlow. The STREET model is based
on the assumption that the dilution of pollutants emitted form the vehicles is proportional
to the distance from the source to the receptor, while in the Hotchkiss and Harlow model,
the dispersion is described using the eddy diffusivity formulation, which results in a
sgquare root dependence of dilution as function of distance from the source. For the short
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source-receptor distances, relevant for street canyons, the linear dilution concept is known
to be more appropriate than the square root dependence resulting from the eddy diffusivity
formulation. This means that the simple empirical STREET model is conceptually more
correct than the analytical model based on the diffusivity equation, but the simplifications
anticipated in both models preclude any decisive statement.

Leeward ! Windward
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I
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0 ‘ i

90 180 270 360
WIND DIRECTION

Figure 3.1 Street level concentrations versus wind direction. 0° and 180° - wind parallel to the street
axis. Wind tunnel measurements from Hoydysh and Dabberdt (1988).
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™ 00 +—F——T %7 T

Figure 3.2 Vertical concentration profiles. Wind direction perpendicular to the street. Symbols
asin Figure 3.1.

3.1.3 The CPBM model

An innovative approach was introduced by Yamartino and Wiegand (1986) in their
Canyon Plume-Box Model (CPBM). The concentrations are calculated combining a
plume model for the direct impact of vehicle emitted pollutants with a box model that
enables computation of the additional impact due to pollutants recirculated within the
street by the vortex flow. The wind flow in the canyon is defined using the aforemen-
tioned model by Hotchkiss and Harlow (1973) for the transverse components, u and w,
while a simple logarithmic profile is anticipated for the longitudina component, v. An
empirical turbulence model is used for the turbulence parameters o, oy and oy, repre-
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senting the standard deviations of flow velocities about the mean flow. Variables used to
estimate the turbulence include the mechanical component driven by the roof top wind
and the therma component, dependent on the global solar radiation and the number of
vehicles. Thelast accounts for the heat released by the vehiclesin the street.

ADVECTIVE DIFFUSIVE FRESH AIR
FLUX FLUX PLUME

1M1 1M1 W

INITIAL SOURCE
DISTRIBUTION

Figure 3.3 Schematic diagram of the principal mechanisms of the vortex sub-model in the Canyon Plume-
Box Model (after Yamartino and Wiegand (1986)).

The main features of the plume model are illustrated in Figure 3.3. The plume is divided
into three segments (P1, P, and Ps) which are assumed to follow straight line trajectories
and disperse according to Gaussian plume formulas. The largest impact occur on the lee
side, due to contribution from the plume P;. The vertical dispersion parameter, o, is
given by,

o,t) = H/J2n+o,, -t (3.12)

where H, is the initial plume dispersion, dependent on the size and the speed of vehicles.
ow is calculated at the effective source height, being equal to the half of the vehicle height.
The transport time, t, is equal to x/up, where X is the distance from the source (a vehicle
line) to the receptor point and u is the cross canyon velocity calculated from the
Hotchkiss and Harlow model. Across canyon average values, calculated at the effective
source height, are used for u,. Similar formulations are used for the plume segments P,
and Ps, but with appropriate turbulence parameters and the transport winds calculated
from the Hotchkiss and Harlow model as average values along the plume trajectories.

The contribution to concentrations resulting from the recirculation component is
calculated from the considerations of the mass budget within the canyon. The following
expression is derived,

_ Q F
Cr = u, (W/ 2)(1- F) (313)
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where Q is the emission rate per street length, W is the width of the canyon and F is the
fraction of material that is recirculated, given by,

F = exp(-t, /1) (3.19)
wheretsis atime scale related to the vortex recirculation time, given by

t. = 2H/u, (3.15)
The life time, 1, determining the canyon ventilation speed, is expressed in terms of
advective and diffusive components ta and tp, respectively as

tt= ot (3.16)

where
1,0 = V2no,w, [ (H-W) (3.17)
1,7 = (W-2V2n5))0,, / (V2r H-W) (3.18)

oj is the size of the fresh air plume at the top of the canyon and w; is the speed of the
plume. ow is the turbulent velocity at the top of the canyon. w; is calculated from the
Hotchkiss and Harlow model, while o; was empirically determined to be 0.25 m.
Yamartino and Wiegand (1986) claim, however, that the advective process contributes
only marginally to canyon ventilation and setting o; = O provides only slightly worse
model performance.

For al receptors on the lee side of the canyon, the recirculation concentration Cr is added
to concentrations calculated by the direct plume model. For the wind side, where the only
contribution arises from the recirculating air, the dilution of the concentrations due to
entrainment of the clean air is calculated assuming a linear growth of the size of the jet,
with the growth rate proportiona to o, the standard deviation of the cross canyon
velocity.

The plume-recirculation model is used only for the case when the vortex advection
dominates over diffusion, i.e.

Uy > —ouw (3.19)

where o IS the average cross-canyon turbulence calculated at the effective source height.

When the condition (3.19) is not satisfied, what usually will occur when the wind
direction is close to the street axis or in the case of very light winds, a simpler, non-vortex
dispersion model is used. Concentrations are then computed by assuming a plume diluted
with velocity v (along-street component) and travelling parallel to the canyon axis. The
Gaussian plume dispersion parameters are again calculated assuming a linear growth
proportional to the turbulence parameters and initial plume size depending on the size and
speed of vehicles.

The CPB model was tested on data from the Bonner Strasse experiment in Cologne,
Germany (Yamartino and Wiegand, 1986). A subset of the data was used for optimisation
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of the model. The performance of CPBM was shown to be significantly better than of the
empirical STREET model, especially considering the broad range of the meteorological
conditions for which the STREET model was not specifically designed.

3.1.4 The CAR model

An empirical approach was used in development of the Dutch traffic pollution model
CAR (Cdculation of Air pollution from Road traffic) (Eerens et al., 1993). Based mainly
on wind tunnel experiments (van den Hout and Baars, 1988, van den Hout and Duijm,
1988, van den Hout et al., 1989) aset of empirical relationships was established between
wind direction and concentrations for various street configurations. The wind tunnel
experiments covered 49 configuration sets which differed with respect to dimensions,
distances and shapes of streets and its buildings. Also the influence of trees along streets
was investigated. The results were incorporated in a plume type model, called TNO traffic
model (van den Hout and Baars, 1988) which was the basis for finally development of the
more operational CAR model in which few most distinguish street configurations with
respect to dispersion conditions were categorised. For each street category a source-
receptor relationship is specified as a function of the distance between the receptor point
and street axis. Only annual average concentrations are calculated and other statistical
means are estimated based on empirical relationships are derived from measurements in
the national pollution network. Those relationships are updated every year. The model is
now applied as a regulatory model in Dutch cities, and an international version, CAR
International (Boeft et al., 1995) isaso available.
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4 The Operational Street Pollution Model (OSPM)

With the purpose of providing a simple method for estimation of pollution from traffic in
Nordic cities the Nordic Council of Ministers promoted development of the Nordic
Computational Method for Car Exhausts (NBB). The method is described in Larssen
(1984). The NBB method is based on two submodels: an emission model and a dispersion
model. The emission model was developed using the current experience with emission
factors, traffic flow modelling, traffic composition etc. The dispersion model was based
on the STREET- model, but only the worse-case conditions were considered. NBB was
used for prediction of NO, and CO pollution. Shortcomings of the dispersion part of NBB
lead to the need of better description of the dispersion phenomena in streets. This work
was initiated in 1987 at the National Environmental Research Institute (NERI), Denmark,
in co-operation with the Norwegian Institute for Air Research (NILU) and The Swedish
Meteorological and Hydrologica Institute (SMHI). As a result of this work a new
dispersion model was developed - the Operational Street Pollution Model (OSPM) (Hertel
and Berkowicz, 1989a). In 1993 the revised version of the Nordic Computational Method
was issued, where the dispersion part was based on the OSPM model, but still only for
prediction of the highest concentrations, disregarding the actual meteorological conditions
(Hertel and Berkowicz, 1990).

OSPM is based on similar principles as the CPB-model by Yamartino and Wiegand
(1986). Concentrations of exhaust gases are calculated using a combination of a plume
model for the direct contribution and a box model for the recirculating part of the
pollutants in the street (Figure 4.1). OSPM makes use of a very simplified parameteriza-
tion of flow and dispersion conditions in a street canyon. This parameterization was
deduced from extensive analysis of experimental data and model tests (Berkowicz et al.,
1995a,b). Results of these tests were used to improve the model performance, especially
with regard to different street configurations and a variety of meteorological conditions.

Roof level wind

Background pollution

T SN

Recwculatlng air

i

| eeward L 4 Direct plume

\Windward
side

side

Figure 4.1 Schematic illustration of the basic model principlesin OSPM. Concentrations are calculated as a
sum of the direct plume contribution and the recirculating pollution
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4.1 The direct contribution

The direct contribution is calculated using a simple plume model. It is assumed in OSPM
that both the traffic and traffic emissions are uniformly distributed across the canyon. The
emission field is treated as a number of infinitesimal line sources aligned perpendicular to
the wind direction at the street level and with thickness dx. We disregard the cross wind
diffusion and the line sources are treated as infinite line sources. The emission density for
such aline sourceis

Q
W (4.1)

where Q isthe emission in the street (g m™ s*) and W is the width of the street canyon.

The contribution to the concentration at a point located at a distance x from the line

source is given by,
2 d
dCd = \/:—Q
T U, Gz(x)

where up, is the wind speed at the street level and 6,(X) is the vertical dispersion parameter
at adownwind distance x.

Equation (4.2) is integrated along the wind path at the street level. The integration path
depends on wind direction, extension of the recirculation zone and the street length. The
main principles for estimation of the integration path for Equation (4.2) are illustrated in
Figure 4.2. If the roof level wind direction is a angle ® with respect to the street axis,
then the street level wind in the recirculation zone forms also an angle ® with the street
axis, but the transverse component is mirror reflected. Outside the recirculation zone the
wind direction is the same as at roof level.
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Figure 4.3 Geometry of the recirculation zone.
a) the recirculation zone totally inside the canyon;
b) the downwind building intercepts the recircul a-
tion zone.

Figure 4.2 Illustration of the wind flow and forma-
tion of the recirculation zone in a street canyon.
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The length of the vortex, Lyortex, iS assumed to be twice the height of the upwind building,
Hupwing. FOr wind speeds (roof level) less than 2 m/s, alinear decrease of Lyorex With wind
speed is assumed. This is consistent with the observations of e.g. DePaul and Sheih
(1986) indicating disappearance of vortex circulation at low wind speeds.

Huowina depends on canyon geometry and wind direction at roof level. Openings between
buildings will result in Hypwing = O, depressing thereby formation of the recirculating
vortex.

The maximum extension of the recirculation zone is given by the width of the street - W,
or by the length of the vortex Lyotex, Whichever is smaller. For an oblique wind direction
and when Lortex > W, the extension of the recirculation zoneis given by

Liee = min(W; Lvortex'Sin(q))) (43)

There exists thus an angle ® for which the extension of the recirculation zone is smaller
than the width of the canyon. For street canyons with height to width ratio 1:1, this angle
is30°.

The vertical dispersion parameter, o, is modelled assuming that the dispersion of the
plume is solely governed by the mechanical turbulence. We disregard the turbulence due

to thermal stratification, as it usually is small at street level. The mechanical turbulence is
taken to be generated by two mechanisms: by the wind and by the traffic in the street.

ou = (@, ) + %) (4.4)

where o, is the vertical turbulent velocity fluctuation, o is a constant and o is the traffic
created turbulence. Parameterization of oy, Will be discussed later. The proportionality
constant, o, is given a value of 0.1, what corresponds to typical levels of mechanically
induced turbulence.

The dispersion parameter of the plume travelling a distance x is given by

5. (X) = cwui + he (4.5)

b

Here h, is the initial (immediate) dispersion in the wakes of the vehicles and we assume
that h, = 2m.

For a receptor on the leeward side, the direct contribution is calculated considering the
emissions from traffic in the recirculation zone only. For areceptor on the windward side,
only contributions from the emissions outside the recirculation zone are taken into
account. If the recirculation zone extends through the whole canyon, no direct contribu-
tion is given for the receptor on the windward side.

When the angle between wind direction and the street axisis small (near parallel flow) the
recirculation zone may occupy only a small portion of the canyon. As the flow patterns
inside and outside the recirculation zone do not differ much in this case (according to the
concept used in OSPM, the angle between the respective wind vectors is 2d), emissions
from outside the recirculation zone may contribute to the concentrations at the leeward
receptor. This is accounted for in OSPM by extending the integration path for leeward
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receptor to the whole canyon, but the contribution from outside the recirculation zone is
weighted by an angle and wind speed dependent factor R, which is given by,

R = max(0, cos(2r- ®)) (4.6)

where r is a function of wind speed; r=1 for roof top wind speed greater than 2 m/s and
decreases linearly to zero for wind speed less than 2 m/s. When @ tends to zero, or the
wind speed is very low, the weighting factor is 1. For wind speeds larger than 2 m/s the
contribution from outside of the recirculation zone is zero for ® > 45°. The procedure
outlined here is solely based on intuitive reasoning, but the main purpose of this approach
isto get a smooth transition from arecirculation regime to aparallel flow.

When the integration path is long (as usualy is the case for a near parale flow) the
pollutants may be dispersed so much in the vertical direction that they escape from the
canyon. In OSPM it is assumed that this takes place when o, > H and contributions from
sources further upwind are computed assuming an exponential decay with the rate given

by,

ko= ow 47

where o is the canyon ventilation velocity determined by the turbulence at the top of the
canyon,

Owt = ((xut )2+0.462,, )/2 (4.8)

where u; is the wind speed at the top of the canyon and the term with oy, iS added in order
to account for the traffic created turbulence. The proportionality constant, A, is given the
same value as a, i.e. 0.1. This is the presently used approach, but contrary to the street
level turbulence, some dependence on ambient air stability conditions can not be excluded
and further research on this subject is needed.

The analytical expressions for the dependence of the direct contribution on wind direction
are given by Hertel and Berkowicz (1989a). These expressions were derived for infinite
street canyons, while in the present version of OSPM, some modifications were intro-
duced, so the integration path can be limited by a finite street length if e.g. a broad
Intersection exists at a shorter distance from the receptor or the street becomes broader or
open.

For the specia case of wind direction perpendicular to the street axis the expression for
the direct contribution will read:

Cd = E Q Inh0+(GW/ub)W

nWao,, ho

(4.9)

This expression can be compared with the formula (3.4) for the leeward concentration in
the STREET model, but only considering ground level concentrations, i.e. for z=0.
However, in order to make this comparison more straight forward we have to replace the
homogeneous emission distribution, assumed in OSPM, by a discrete distribution, as
assumed in STREET;
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Ci = (4.10)

Here, like in (3.4), Q; is the emission strength of the i-th traffic lane and X; is the corre-
sponding horizontal distance. Similarity between the formulas (3.4) and (4.10) is obvious,
especialy regarding the dependency on wind speed and the distance to the source but the
proportionality coefficients are different. The formula (3.4), used in the STREET model,
is purely empirica and is supposed to match the leeward concentrations in a street
canyon. Expression (4.10), and the continuous emission distribution formula (4.9),
represent the direct contribution from a plume travelling with a speed u, and which at a
distance x from the source has the vertical dispersion o,=hy+(cw/Up)X. The total concen-
tration is made up of the direct and the recirculation contributions.

4.2 Recirculation contribution

The contribution from the recirculation part is calculated assuming a simple box model.
The box model is illustrated in Figure 4.3. It is assumed that the canyon vortex has the
shape of a trapeze, with the maximum length of the upper edge being half of the vortex
length Lyortex- The ventilation of the recirculation zone takes place through the edges of the
trapeze but the ventilation can be limited by the presence of a downwind building if the
building intercepts one of the edges.

The inflow rate per unit length is given by,

rec

INFLOW = 2| (4.11)
w

where L, is the width of the recirculation zone. For narrow streets L« can be determined
by the distance between buildings, W, (Figure 4.3b).

The outflow rate through the top and side edges is calculated with flux velocities given
by: o - the top edge, u; - the upper half of the side edge and u, - the lower half of the side
edge.

OUTFLOW = C, (oL, + ulLy + uyly,) (4.12)

wt =t

L, Ly and L are calculated taking into account the canyon geometry and the extension of
the recirculating zone (see Figure 4.3).

The concentration in the recirculation zone is calculated assuming that the inflow rate of
the pollutants into the recirculation zone is equal to the outflow rate and that the pollut-
ants are well mixed inside the zone.

When the wind vortex extends through the whole canyon, the direct contribution at the
windward side is zero and the only contribution is from the recirculation component. The
concentration at the leeward side is aways computed as a sum of the direct contribution
and the recirculation component. The direct contribution is usually much larger than the
recircul ation component.
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Considering the simple case when the vortex is totally immersed inside the canyon
(according to assumptions made in the OSPM, this is the case when W/H<1), the
recirculation contribution reads,

Co = Q (4.13)
oW

Recaling that o:=0.1w, the recirculation contribution given by (4.13) is practically
identical with the formula (3.5) for the windward concentration in the STREET model
(concerning ground level concentrations only).

4.3 Street level wind speed

The wind speed at street level, up, is calculated assuming a logarithmic reduction of the
wind speed at roof top towards the bottom of the street. A simplified dependence on the
angle between wind and the street axisis also introduced.

Inth, /z,)

u, = U, m(l— 0.2 pSIn((D)) (414)

where H is the average depth of the canyon, while p = Hyuing/H and this ratio is not
allowed to exceed 1. h, istheinitia dispersion height, as defined in (4.5).

For a street with 15m high buildings, roughness length z, = 0.60m and a paralléel flow (®
= 0), we find that u, = 0.37u.. For a perpendicular flow (® = 90°), the reduction is 20%
larger. In the case of openings between buildings on the upwind side (Hypwinga = 0) the
wind speed will be the same as for aparallel flow.

4.4 Traffic induced turbulence

Generation of turbulence by moving cars has been the subject of several theoretical and
experimental investigations (Eskridge and Hunt, 1979; Thomson and Eskridge, 1987,
Grpnskei, 1988, Eskridge et al., 1991). The vehicle effects described in the mentioned
papers are applicable for fast moving cars on open roads, as e.g. highways. In urban street
canyons there is usually a dense flow of vehicles, and the turbulence field created by them
cannot be considered as a simple superposition of non-interacting vehicle wakes, as it is
proposed by Eskridge and Hunt (1979). A ssmpler approach, which we believe is more
suitable for street canyons, was suggested by Hertel and Berkowicz (1989c¢).

Vehicles in the street are considered as moving flow distortion elements creating
additional turbulence in the air,

G\%vo = bZVZD (415)

where V isthe average vehicle speed, D isthe density of the moving elements (cars) and b
isan empirical constant related to the aerodynamic drag coefficient.

The density of the traffic in the street is given by the relative area occupied by the moving
vehicles with respect to the street area,
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(4.16)

where Nye, is the number of cars passing the street per time unit, S is the horizontal area
occupied by a single car and W is the width of the street. Substituting (4.16) into (4.15)

we obtain:
N, V-5
o, = b —w (4.17)

Expression (4.17) tells thus that the traffic created turbulence increases with the square
root of the traffic flow (Nyen'V) and that this turbulence decreases with increasing canyon
width. The empirical constant, b = 0.3, as used in the present version of OSPM.

The traffic induced turbulence plays a crucial role in determination of pollution levelsin
street canyons. During windless conditions the ambient turbulence vanishes and the only
dispersion mechanism is due to the turbulence created by traffic. Thereby, the traffic
created turbulence becomes the critical factor determining the highest pollution levelsin a
street canyon. Some experimental results concerning the contribution of the traffic to the
street turbulence are presented in Section 6.

4.5 Wind direction averaging

The wind direction in urban areas is seldom constant over a time period of an hour or
even less, in particular for low wind speeds. Large fluctuations occur and thereby, the
dependence of concentrations in a street canyon, when averaged over an hour or so, is
significantly smoothed. In order to account for this effect an averaging of the calculated
concentrations with respect to wind direction was introduced (Hertel and Berkowicz,
1989¢). The averaging interval is given by,

Gvc

AD = + for u < 1Im/s

u (4.18)
AD =+05 foru = 1m/s

where gy = 0.5 m/s. A® isin radians.
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5 Model results

Model results are summarised in Figures 5.1 and 5.2. Ground level wall-site concentra-
tions are calculated for two artificial East-West oriented street-canyons with H=20m and
W=20m. A constant traffic flow consisting of 900 light and 100 heavy vehicles travelling
wigh allspeed of 40 km/h is assumed. The emission density in the street is set to 1000 units
m-s-.

In the first example, the buildings on both sides of the street are assumed to be of equal
height and densely spaced. Calculations are performed for seven different values of roof
level wind speed: u; = 8, 6, 4, 2, 1, 0.5 and 0 ms™. Resulting concentrations as function of
wind direction are shown in Figures 5.1a and 5.1b for a north and a south side receptor,
respectively. Due to the symmetry of the considered street, the wind direction dependency
of concentrations on the respective sides of the street are just shifted by 180° with respect
to each other. Dependence on wind direction shown in these figures is very pronounced.
The leeward concentrations (southerly winds for the south side and northerly winds for
the north side) are much higher than the windward concentrations. Maximum concentra-
tions are calculated for wind directions close to parallel with the street (90° and 270°).
Thisresult is valid for long street canyons - the case anticipated in this example. Increas-
ing concentrations for winds approaching the parallel direction were aso observed in
wind tunnel experiments by Hoydysh and Dabberdt (1988) (Figure 3.1). For perpendicu-
lar winds, a local maximum on the leeward side is seen too, but only for wind speeds
larger than 2ms™*. For wind speeds smaller than 2ms™ the extension of the vortex starts to
decrease. According to assumptions made in OSPM and for the canyon geometry
considered here, i.e. for H/W = 1, this will permit additional ventilation of the recircula-
tion zone through the side edges (see Figure 4.3). This results in a small decrease of
concentrations on the windward side where the only contribution is the recirculating
component. For the windward side the direct contribution starts to become important for
wind speeds less than 1ms™. At still lower wind speeds, when the street vortex disappears,
the wind direction dependence disappears too. We recall that at vanishing ambient winds
the concentration levels are solely determined by the traffic created turbulence.

The second model example, shown in Figure 5.2, is for a street with 20m high buildings,
but only on the south side of the street. Considering higher wind speeds, the concentra-
tions calculated for the North side receptor (Figure 5.2a) are in genera very low, except
when the winds are close to parallel. The reason for thisis the absence of the recirculation
vortex for Northerly winds (Hupwing = 0) and for the southerly winds, when the vortex is
created, the recirculation component (the only contribution to the windward receptor) 1S
strongly diluted due to increased ventilation of the recirculation zone (see Figure 4.3). For
vanishing wind speeds the concentrations become similar to that considered in the first
example, shownin Figure 5.1a.

The most striking feature of the wind direction dependency of the concentrations on the
south side of the street (Figure 5.2b) is that the strong minimum observed for the
symmetrical canyon (Figure 5.1b) is much less pronounced. The difference between the
modelled concentrations for southerly and westerly winds is small. The maximum
observed for parallel winds is due to the assumption about an infinite street length.
Southerly winds, for which the receptor point is leeward, result in concentrations only
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dlightly smaller than in the corresponding situation in the case of the symmetrical canyon.
The only difference is here the strength of the recirculation contribution. The receptor
point on the southern side receives direct contributions from the traffic in the street
regardless of the wind direction. This is the consequence of the absence of recirculation
vortex in the case of northerly winds.

a) North side; W = 20m, H,pying = 20m a) North side; W = 20m, H,pying = 0.
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Figure 5.1 Modelled concentrations as function of Figure 5.2 Modelled concentrations as function of
wind direction and wind speed for an East-West wind direction and wind speed for an East-West
oriented street canyon with 20m high buildings on oriented street canyon with 20m high buildings on
both sides. Wind speed is given in the legend. the south side only.

The two examples considered here serve as an illustration of the model behaviour only.
OSPM is based on many simplified assumptions about flow structure and dispersion
conditions in street canyons and in order to verify the model performance, comparison
with field measurements is necessary.
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6 Comparison with measurements

OSPM has been extensively tested on data from several measuring campaigns (Hertel and
Berkowicz, 1989a,b,c; Berkowicz et al., 1995a,b). Results from the model tests have
contributed in order to improve the parameterization of the model.

Reliability and quality of a model test depend to a large extend on the quality of the input
data. For traffic pollution models the most essential input parameters are emission and
meteorological data. Traffic data and vehicle emission factors are required for estimation
of emission. For streets in an urban environment the background contribution is important
too. The background contribution is especially important considering formation of
secondary pollutants, such as eg. NO,. This subject is discussed in more details in
Section 7.

In 1993 a new measuring and modelling project, aimed for study of urban air pollution,
was established in Denmark. The project was a part of the National Environmental Rese-
arch Programme covering different aspects of strategic importance for the Danish envi-
ronment. The project on traffic pollution in urban areas was one of the largest projects in
the Programme.

6.1 The experimental site

An intensive measuring site was established in connection with a permanent pollution
monitoring station, operating in the frames of the National Monitoring Programme (LMP
[11), in the street Jagtvej, Copenhagen (Kemp et al., 1996). Continuous traffic counts
provided data on the traffic flow. Measurements of background air pollution were avai-
lable from a nearby site where a measuring station was established on the roof of a 20m
high building (University of Copenhagen, H.C.@. Institute). The meteorological data used
for the model calculations with OSPM also originate from the roof station, where a 10m
tall mast was established, providing measurements of wind speed, direction, temperature,
humidity and global radiation.

The map with location of the measuring sites is shown in Figure 6.1, while a more
detailed map of the Jagtvej-site is given in Figure 6.7.

Measurements from the monitoring station at Jagtvej are used here for comparison and
analysis of model calculations with OSPM. Before using for model evaluation the data
were undergone a careful quality control and examined for inconsistent behaviour.

Additionally to air pollution measurements, special meteorological measurements were
also conducted at the Jagtvej site. Here, two 18m high meteorological masts were raised
on both sides of the street, close to the permanent air pollution monitoring station.
Measurements from these masts are used for examination of flow and turbulence condi-
tions in the street but only few selected results are presented here.



1 - LMP III monitoring station

2 - DOAS and conventional monitors
(background monitoring station)

3 - Automatic traffic counts

4 - Special meteorological masts

5 - Standard meteorological mast

Figure 6.1 The map of the measuring site in Copenhagen. Locations of the measuring stations are indicated in
the figure. A more detailed map of the Jagtvej siteis shown in Figure 6.7.

6.2  Air pollution data

Comparisons of measured and modelled hourly concentrations of NOy in Jagtve) are
shown in Figures 6.2a and 6.2b for the measuring periods in 1993 (1230 hours) and 1994
(4275 hours), respectively.

Jagtve is a busy street with about 22 000 vehicles/day. The street is 25m wide and is
flanked on both sides with about 18m high buildings (4 -5 stories). Orientation of the
street is 30° with respect to North. The pollution monitoring station is situated on the East
side of the street where the building facades are closed. On the opposite side, narrow side-
streets make openings between the building facades (Figure 6.7).

Hourly emissions of NOy are estimated using the traffic counts in Jagtvej and average
emission factors estimated in an earlier investigation (Miljostyrelsen, 1991). An average
diurna traffic profile was constructed from the automatic countings in the street with
differentiation between working days, Saturdays and Sundays. Data from working days
only are used in calculations presented in Figure 6.2. The same average traffic profile is
used both for 1993 and 1994 but assuming 17% catalyst cars in 1993 and 25% in 1994
(Danish Environmental Protection Agency, personal communication).

Very good correlation between the modelled and the measured concentrations is evident
from the results presented in Figure 6.2. The correlation coefficient R” = 0.85 for the 1993
and R? = 0.89 for the 1994 data. Some larger scatter is, however, observed especialy at
the high end concentrations. Uncertainties in emission estimations have undoubtedly
contributed to this scatter but the main contribution may be attributed to the uncertainties
in the meteorological data and oversimplifications of the flow parameterization in OSPM.
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Figure 6.2 Comparison between measured and modelled concentrations of NO, in Jagtvej. a) 1993 data;
b) 1994 data.

A more detailed evaluation of a model performance requires an analysis of the behaviour
of model results with respect to the meteorological conditions in comparison with
experimental data. Such an analysis is presented in Figures 6.3 and 6.4 where the
measured and modelled NOy concentrations are shown as a function of wind direction
(roof mast measurements). Only data from 1993 are used here but additionally to Jagtvej,
comparison is also made for two other streets in Copenhagen: Bredgade and H.C.
Andersens Boulevard where air pollution monitoring is conducted by the Environmental
Protection Agency of Copenhagen (HLU, 1996).

Bredgade is a narrow street canyon (W = 15m and H = 15m) with closed building facades
on both sides. The street is oriented 21° with respect to North and the monitoring station
is on the West side of the street.

H.C. Andersens Boulevard is a broad avenue (W = 60m and H = 25m) oriented 130° with
respect to North. The monitoring station is on the north-east side where the street is
flanked by somewhat irregular, but on average 25m tall buildings. On the opposite side
the street is practically open as it next to the Copenhagen Amusement Park Tivoli.

The traffic intensity in Bredgade is approximately the same as in Jagtve (ca. 20 000
vehicles/day) while H.C. Andersens Boulevard is one of the most heavily trafficked
streets in Copenhagen, with about 60 000 vehicles/day.

The measuring data presented in Figure 6.3 are from daytime hours only (from 8 to 18
hour) and additionally divided into two groups: wind speed between 1 m/s and 3 m/s and
wind speed between 4 m/s and 6 m/s.

36



a) Jagtvey

800 4

700 +

[0}

o

o
I

a

o

o
I

NOy-obs (ppb)
w N
8 8

N
o
o

=
o
o

b) Bredgade

800 4
700 +

600 +

a
o
o
I
+

NOy-obs (ppb)

T
90 120 150 180 210 240 270 300 330 360
WIND DIRECTION

T
90 120 150 180 210 240 270 300 330 360

WIND DIRECTION

c) H.C. Andersens Boulevard

800 4

700 +

600 +

NOy-obs (ppb)
N o
o o
o o
L L

300 +

200 4

100

Figure 6.3 Wind direction dependence of measured
NO, concentrations. The wind sector for which the
monitoring station is windward is shadowed.

90 120 150 180 210 240 270 300 330 360

WIND DIRECTION

+-1m/s<u<3n/s
O-4m/s<u<6ms

a) Jagtvey

800 4

700 +

[0}

o

o
I

a

o

o
I

NOy-mod (ppb)
1]
o

N
o
o

=
o
o

0 30 60 90 120 150 180 210 240 270 300 330 360
WIND DIRECTION
b) Bredgade
800 -
700
+
600 4 .
+ 7
2 500 L F
= + 4 4+
s 4 N
S 400 A + + +
£ £r + N g + 3
x ¥ #;rJf + T
% 800 D%F o B oo +
+ %D
|
200 i =
ul
100
0 T 1

0O 30 60 90 120 150 180 210 240 270 300 330 360

WIND DIRECTION

c) H.C. Andersens Boulevard
800 +

NOy-mod (ppb)
8
o

N
o
o

=
o
o

0 30 60

90 120 150 180 210 240 270 300 330 360
WIND DIRECTION

Figure 6.4 Wind direction dependence of modelled
NO, concentrations, symbols asin Figure 6.3.

37



The well known street canyon effect is clearly evident from the results shown for Jagtve)
and Bredgade. When the wind direction is such, that the measuring point is on the
windward side (westerly winds for Jagtve] and easterly winds for Bredgade), the concen-
trations are much smaller than in the case of a leeward position. The windward wind
sectors are shadowed in the figures. The difference is dightly larger for Jagtvel than for
Bredgade, especiadly in the case of higher wind speeds (4 to 6 m/s). The dependence on
wind direction is less pronounced in the case of low wind speeds.

The street Bredgade is narrower than Jagtvej and the dilution of pollution by the recircu-
lating vortex is smaller. This is why the concentrations observed at the Bredgade
monitoring station for the windward sector are dightly larger than the corresponding
concentrations in the case of Jagtve.

The dependence on wind direction observed in H.C. Andersens Boulevard is quite
different from the two other streets. The south-westerly wind sector, for which the
measuring point is on the windward side, is here relatively unobstructed. No concentration
minimum is observed, due to absence of the recirculating vortex. On the contrary, there is
a pronounced leeward maximum, which occurs for the north-easterly winds. This
indicates formation of avortex in the leeward wind sector.

Corresponding results from model calculations are shown in Figure 6.4. It is evident that
the model reproduces the observed behaviour very well. Somewhat larger discrepancies
observed especially for lower wind speeds are probably attributed to the models inability
to adequately describe the flow conditions influenced by the complex street geometry.

Dependence of the measured concentrations of NO, on wind speed is shown in Figure 6.5.
Here, for each of the studied streets is selected a sector where the dependence on wind
direction is not pronounced. The selected sectors are:

Jagtvey: 60° - 180°
Bredgade: 230° - 350°
H.C. Andersens Boulevard: 90° - 210°

The data are furthermore divided into two groups:. one group for which the global
radiation, is less than 400 W/m?, and one for which the global radiation is greater than
400 W/m?. Only daytime hours are considered. The separation with respect to global
radiation is made in order to highlight the possible influence of the thermal stratification
of the air on dispersion conditions in streets. The corresponding results from model
calculations are shown in Figure 6.6.

The dependence on wind speed is obvious, and as expected, shows decreasing concentra-
tions with increasing wind speed. Model calculations agree well with the measuring
results.
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No notable dependence is observed on global radiation. This indicates that the thermal
stratification does not play any significant role in dispersion of pollutants in these streets.
The main mechanism is mechanically created turbulence. In the case of low wind speeds,
when the thermal stratification might be important, the traffic created turbulence appears
to dominate. For H.C. Andersens Boulevard (Figures 6.5¢ and 6.6c) there is, however,
some evidence of underprediction by OSPM of concentrations at low wind speeds when
stable conditions may occur. The reason for this might be that the traffic created turbu-
lence in this wide and open street is suppressed due to the stable stratification, so the
street ventilation is less than predicted by the model. More experimental evidence is
necessary to make decisive conclusions.

6.3 Wind and turbulence measurements in the street.

As a part of the project on Air Pollution from Traffic in Urban Areas, conducted with
support from the National Environmental Research Programme, a meteorological
measuring station was established in the street Jagtvej, close to the permanent pollution
sampling station. The purpose of the meteorological station was to create a database that
could be used to validate, calibrate or extend models in use to describe the flow and
dispersion of pollutants in street canyons (Nielsen et al., 1995). Wind and turbulence
parameters were measured on two masts placed on the opposite sides of the street.
Location and design of the measuring station is depicted in Figure 6.7. The measurements
were conducted for about a year and some selected data are presented here.

M easurements from the sonic anemometer, placed at a height of 6m on the east side mast
(mast 1), are used in combination with the wind measurements from the roof mast on the
nearby University building (HC@) to visualise the flow and turbulence conditions in the
street. In Figure 6.8 are shown measurements of the vertical velocity component as
function of the above roof wind direction, but only for wind speeds larger than 5m/s.
Wind directions parallel with the street are indicated by dashed lines in the figure. It is
evident that in the case of easterly winds the vertical velocity is upward and is decreasing
with wind approaching the parallel direction. This is a typical behaviour for a street
vortex. In the case of westerly winds, the picture is less conclusive, perhaps due to the
presence of small side streets on the west side of the street (see Figure 6.7b). The vertical
velocity component is, however, predominantly downward when the wind direction is
close to perpendicular to the street axis.

In Figure 6.9 the vertical velocity is shown as a function of the normal (perpendicular to
the street) component of the free wind velocity, with the westerly winds corresponding
here to positive values. Again it is seen that for the easterly winds the vertical wind
velocity component in the street increases almost linearly with the normal component of
the wind velocity but the behaviour is more obscure in the case of the westerly winds.
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b)

Figure 6.7 Setup of the meteorological measuring station in Jagtvej. @) view from the South, b) map of the

nearby surroundings.
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Figure 6.11 Diurnal variation of o, for U < 1.5 m/s. The traffic created turbulence as calculated by OSPM is
shown by continuous lines. a) working days; b) Saturdays, c) Sundays

The sonic-anemometer data are also used for examination of the turbulence properties of the
street wind flow. In Figure 6.10 the standard deviation of the vertical velocity component is
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shown as function of the free wind velocity. The data cover working days only but are
divided into two groups:. the night time observations (from midnight to 5 am; Figure 6.10a)
and the day time observations (from 10 am to 15 pm; Figure 6.10b). A linear relationship
between the turbulence parameter and the free wind speed is obvious. The dope of oy,
versus U is about 0.1 both for night and day time data. Contrary to the night time observa-
tions, the day time data have, however, a non-zero intercept and for U less then about 3m/s,
ow approaches a more or less constant value of about 0.3-0.4 m/s. The difference between
night and day time observations can probably be attributed to the traffic created turbulence.
In order to rule out the influence of solar insolation on the day time turbulence, only
observations with the global radiation less then 300 W/m? are selected here.

The influence of traffic on the turbulence in the street is illustrated in Figure 6.11. Here,
only observations with the free wind speed U < 1.5m/s are selected and the diurnal
variation of the vertical velocity turbulence is shown for working days, Saturdays and
Sundays, separately. Additionally, the traffic created turbulence, as calculated by OSPM
(see section 4.4) is shown by continuous lines in the figures. It is seen that the turbulence
in the street has an evident diurnal variation which follows quite well the traffic pattern.
Even the difference in the traffic pattern for working days and week-ends is more or less
reproduced in the diurnal variation of the turbulence. The night time values of o, are,
however, somewhat higher then one would expect from the traffic induced turbulence
only. Some other mechanisms must be of importance here too, as e.g. wind circulation
induced by across the street temperature differences (Sini et al., 1996) or other local wind
effects.

The data analysis presented here concerns measurements at one point in the street only.
Different relationships can be expected at other positions in the street canyon. Examina
tion of measurements from both masts including sensors at different heights will put more
light on the flow and turbulence conditions in the street. Some preliminary results were
presented by Nielsen et al. (1995) and further work isin progress.
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7 Modelling chemical processes in street canyons

Transport and dispersion processes are not the only factors determining relationships
between emission sources and ambient concentrations. Chemistry plays a crucia role in
transformation of pollutants resulting in degradation of some species and formation of
others. Considering transport of pollution on a larger scale, when the transport times
involved are of the order of hours or even days, hundreds of chemical reactions must often
be considered in order to account for the chemical composition of the air. The situation is
quite different when dealing with processes in street canyons. Due to the very short
distances between the sources and receptors, only the fastest chemical reactions can have
any significant influence on the transformation processes in the street canyon air. It means
that most of the pollutants emitted from traffic can be considered as inert components for
which chemical transformations inside the street canyon are unimportant. Such inert
compounds on these time scales are CO and hydrocarbons which actually constitute the
main composition of car exhaust gases. The situation is however different for nitrogen
oxide gases which actually are the compounds most often considered in connection with
impact of traffic pollution on human health.

The main nitrogen oxides are nitrogen monoxide (NO) and nitrogen dioxide (NO,), the
sum of which is denoted as NO,. Regarding health effects, NO is considered to be
harmless, at least at concentrations expected in urban air. On the contrary, NO, can have
severe adverse health effects on humans.

Only a small portion of NOy gases emitted by motor vehiclesisin form of NO,, the main
part being NO. The presence of NO, in ambient air is mainly due to the subsequent
chemical oxidation of NO. The chemistry of nitrogen oxides is quite complex but due to
very short residence times of air pollutants in street canyons (of the order of seconds or
minutes at highest) the only reactions of practical interest here are:

NO+ O, —» NO, + O, (7.2
NO, + hv —» NO+ Or (7.2
O+ 0,—> O, (7.3)

The reaction between the oxygen radical (O°) and the molecular oxygen (O,) (7.3) is very
fast and for all practical purposes the reaction system (7.1 - 7.3) can be restricted to two
reactions only:

- production of NO, due to reaction of NO with ozone (Os); reaction coefficient k (ppb™ s%),
- photodissociation of NO, leading to reproduction of NO and Os; reaction coefficient J (s™)

The time scales characterising these reactions are of the order of tens of seconds, thus
comparable with residence time of pollutants in a street canyon. Consequently, the
chemical transformations and exchange of street canyon air with the ambient air are of
importance for processes leading to NO, formation. Taking this into account, the rate of
change of the concentrations of NO, NO, and O3 in the street can be approximated by the
following eguations:



% = -kINOJ[O;] + JNO,] + [N?]v . [NO]bT- [NO] -
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The first two terms on the right hand side of equations (7.4) - (7.6) account for the
chemical reactions (7.1 - 7.3). Thereafter follow the contribution from the direct emission
in the street ([NO]y, [NO,]y; no direct emission of ozone) and the exchange rate between
the street and the background air. The terms with index b are the background air concen-
trations. The exchange rate is governed by the time constant 9, the residence time.

Assuming that a steady state is achieved (time derivatives become zero), equations (7.4 -
7.6) can be solved analytically giving concentrations of NO, in the street canyon air;

[NO,] = 05(B- (B2 - 4INO,J-[NO,], + [NO,J,-D))*) (7.7
where

[NOz]n = [NO2]\/ + [NOz]b
[NO2Jo = [NO], + [O3]
B =[NO,] +[NO,J,+R+D

The photochemical equilibrium coefficient is given by R = Jk (ppb), while D = (kt)™ is
the exchange rate coefficient (ppb).

Formula (7.7) is implemented in OSPM (Hertel and Berkowicz 1989b) and has success-
fully been used for estimation of NO, concentrations in Danish streets (Palmgren et al.,
1995a).

In the model, the direct emission term, [NO],, is set to a constant fraction (=5%) of
[NOx]v, which is calculated by the dispersion part of OSPM ([NOy]=[NOy],+[NOy]p). The
residence time, t, is approximated by H/c,:. The photodissociation coefficient, J, is
calculated as function of global radiation using an empirical formula derived from
measurements of NO, NO, and Oz inrural areas (Hertel and Berkowicz, 1989b).

The NO,/NOy relationship computed according to formula (7.7) is shown in Figure 7.1.
Here calculations are made for three values of background ozone concentrations. [O3]p=5,
40 and 80ppb. For simplicity, the background concentrations of NOy are assumed to be
zero. The photodissociation coefficient corresponds to a global radiation of 500Wm™ and
the canyon ventilation velocity is set to 6w=0.5ms* which results in the residence time of
40s for a 20m deep canyon. The direct emission of NO; is set to 5% of NO.
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shown using Equation (7.7) and two other models. ve.

For comparison, predictions from two other simple models are also shown in Figure 7.1.
The first implies that a photostationary state is achieved in the street. Thisis equivalent to
the assumption that the residence time of pollutants in the street is infinite, or at least
much larger than the chemical reaction time scale. This approach is used in the CPB
model of Yamartino and Wiegand (1986). The second model is based on the assumption
that production of NO, in the street is equal to the amount of available ozone. This means
that not only the residence time is large enough, but also that the photodissociation of NO,
(reaction (7.2)) can be neglected. The latest approach is used in the Nordic Computational
Method for Car Exhaust Gases (Larssen, 1992). Both the photostationary assumption and
the ozone limiting method clearly overpredict the NO, concentrations. The difference
between the OSPM approach and the two other models decreases, however, with
increasing NO, concentrations. The deviations are also expected to decrease with
decreasing street ventilation (increasing residence time). Because such conditions are also
connected with the highest concentrations, the simple ozone limiting method used by
Larssen (1992) for prediction of the highest NO, concentrations is not unreasonable.

In Figure 7.2 is shown a comparison between concentrations of NO, computed by OSPM
and measurements from the monitoring station in Jagtvej. The agreement is very good,
proving thus that the method based on the simplified chemistry given by reactions (7.1 -
7.3) and the formula (7.7) performs well. Other chemical mechanisms may however be
important in some extreme cases.

One such extreme case was reported by Bower et al. (1994) and Derwent et al. (1995). In
their study, a pollution episode in London in December 1991 was reported where the
concentrations of NO, reached levels which could not be explained by ozone controlled
oxidation. They suggest that the probable reaction is oxidation of NO by molecular
oxygen:

NO+ NO+ O, —> 2NO, (7.8)

46



Asthisisa3rd order reaction, it requires very high concentrations of NO to be important.
Such conditions appeared in December 1991 in London when due to stagnant weather
conditions the concentrations remained significantly elevated for a period of a few days.
However, because equally high concentrations of NO, were measured as well as at kerb
sites and at urban background sites, this episode can not be explained by processes taking
place in a street canyon alone

The contribution of the reaction (7.8) to winter time NO, concentrations in Oslo has also
been considered by Hov and Larssen (1984). Their conclusion was that the main effect is
an increase of formation of NO, in an immediate vicinity of vehicles tail pipe exhaust
where due to low dilution, the concentrations of NO are extremely high. The rate of
formation of NO, by (7.8) increases with decreasing temperatures.

Other reactions can also be important in urban areas with strong photochemical activity
and limited ventilation. Oxidation of NO by radicals, such as e.g. HO,, can be the
dominant path in this case. Again, this is an urban background phenomena and the
additional formation of NO; in street canyons is expected to be less influenced by such
mechanisms.

a7



8 Outstanding problems and conclusions

Application of some few simple models for calculation of dispersion of traffic pollution in
street canyons was discussed. It was demonstrated that even such simple and highly
parameterized models, as e.g. OSPM, can handle a broad range of dispersion conditions
and provide reliable results. The successful performance of OSPM is mainly due to
parameterizations which were based on careful examination of available experimental
data covering a broad range of conditions, but this is aso the limitation of the model.
Considering the "broad range of conditions’ we have to emphasise that this never means -
all conditions. Some of the problems that still lack a practical solution will be discussed in
this section.

The most severe pollution episodes are usually associated with calm or very low wind
speed conditions. Actualy, differences in prevailing wind speed conditions seem to
explain much of the differences in urban pollution levels (Vignati et al., 1995). Consider-
ing flow and dispersion regimes in street canyons at low wind speeds, we have already
mentioned the important role of the traffic created turbulence (4.4 and 6.2) but some
thermal effects can also be important as well. We have here in mind the modification of
flow regimes due to differential heating of building walls. This effect is most pronounced
for east-west oriented canyons where, due to solar insolation, the temperature of a north
wall can be severa degrees warmer than the temperature of a south wall (on the Northern
Hemisphere). Field observations (Nakamura and Oke, 1988) and numerical simulations
(Mestayer et al., 1995, Sini et al., 1996) have shown that such differential heating can
substantially modify the wind flow in a canyon. If the heated wall is windward, this can
even lead to reversing of the flow and thereby largely influence distribution of pollution in
the street. Quantification of this effect in the form of relationships between solar radiation
and wind flow is necessary in order to incorporate these phenomena into applied pollution
models.

Traffic pollution models typically make use of wind flow data related to the roof level.
Such data are rarely available and transformation of wind measurements undertaken at
some few locations in the city or even outside the city are necessary. Taking into account
that urban areas are strongly inhomogeneous, this task is far from trivial. Mesoscale
meteorological models can be used in this case but very fine mesh resolution is required
to resolve the building structures in the city. Thisis not possible with presently available
models where urban areas are treated as bluff bodies and only the large topographical
features are taken into account.

Rotach (1995) has shown that the relationship between the roof level wind speed and the
speed aoft depends on the atmospheric stability conditions. This can be especially
important in the case of stable conditions when the canyon ventilation velocity might be
reduced due to attenuation of the roof level speed and perhaps turbulence.

Local modification of wind flow and turbulence might also be due to some pronounced
building formations nearby the measuring site. Based on wind tunnel modelling, Kennedy
and Kent (1977) have demonstrated that a twofold decrease of CO concentrations
observed at a street site in Sydney, Australia, could be explained by construction of a



tower block that has largely influenced wind flow and thereby dispersion conditions at the
measuring site.

Surroundings of the street canyon can in general have significant influence on flow and
dispersion conditions in the canyon itself. Already the early experiments by Hoydysh et al.
(1974) demonstrated that an upwind fetch of at least 8 to 10 street canyons is required
before the wind flow can be considered stationary. Recent wind tunnel experiments by
Meroney et al. (1995) have shown that ventilation of a canyon in an urban environment is
less than ventilation of the same canyon but in an open country environment. The shape of
roofs of surrounding buildings was also shown to influence the concentration distribution
in street canyons (Rafailidis and Schatzmann, 1995).

The question may arise, whether is it possible at all to manage such a variety of different
conditions and influencing parameters by mathematical models. Perhaps not, at least not
by a single model. Do we need universal models? Are the simple models not adequate for
most of the purposes? Perhaps yes, especially regarding routine applications.

More detailed models are however required when the problem is connected with
interpretation of measurements. Measurements are, as rule, the basis for pollution
surveillance programmes. Measurements provide the most direct information on pollution
conditions (at least at the measuring sites) but as stand alone, they can not be used to
explain the relationships between sources and ambient pollution. Such relationships are
necessary if conclusions based on the surveillance programmes have to be used to any
thing else than just reporting the present conditions. Interpretation of measurements in
terms of source-receptor relationships, meteorological conditions, the local street
conditions e.t.c. can only be done using well performing dispersion models.

One example of using dispersion models in connection with measurements is the
application of OSPM for estimation of emissions of benzene from traffic in Jagtvej. Asit
was demonstrated that OSPM is able to properly describe the relationships between the
meteorological conditions and air concentrations, it was possible to estimate the emission
term by fitting model calculations to the observed concentrations. Using a multiple linear
regression analysis method, the emission term was distributed among light and heavy
vehicles providing thereby the respective vehicle emission factors. Preliminary results are
presented by Palmgren et al. (1995b). After refinement of the method, it will be applied
for surveillance of development of traffic pollution in Danish cities.
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