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Abstract

A hybrid receptor model, combining the features of chemical mass balance models and non-negative factor analysis,

is presented both in theoretical terms and from a more practical viewpoint. A section describes the mathematical details,

and another section presents an uncomplicated set of aerosol data from Northeast Greenland and a step-to-step

demonstration of how the data was analysed using the model. Since 1992 the model has proven useful in several air

pollution studies of very different character.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The two main branches of receptor models are

Chemical Mass Balance (CMB) models and multivariate

factor analysis models. CMB models give the most

objective source apportionment and need only one

sample. They assume knowledge of the number of

required sources and their composition, while factor

analysis, by artful mathematics, attempts to apportion

the sources and determine their composition on the basis

alone of a series of observations at the receptor site

(Henry et al., 1984). The most recent approach in factor

analysis is Positive Matrix Factorization (PMF), which

excludes negative solutions (Paatero, 1997).

Factor analysis is a powerful tool, because the choice

of the model dimension and the search for more realistic

solutions by axis rotations can be based entirely on

mathematical criteria. Nevertheless it is a problem, as

has been emphasized by Henry (1987), that factor

analysis attempts to get more information out of the

data than is really there. Thus, it is a serious methodical

limitation that the results always need subjective
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interpretation in relation to the physical world. As an

improvement confirmatory factor analysis offers some

control of the solutions by ‘‘fixing’’ or ‘‘freeing’’ specific

parameters such as the factor correlation coefficients.

These parameters are set according to the theoretical

expectation of the researcher (Gleser, 1997; Christensen

and Sain, 2002). In an analogous way, the PMF method

offers some control of the solution. If specific values in

the solution are known to be zero, then it is possible to

force the solution toward zero for those values through

appropriate settings, but it is not possible to use

constant source profiles as in CBM. Recently a more

general and complex program, The Multilinear Engine

(Paatero, 1999), has been introduced, which can solve

multi-linear problems with the possibility of implement-

ing all kinds of additional constraints using a script

language.

The Constrained Physical Receptor Model (CO-

PREM) is a simple hybrid model that unifies qualities

from factor analytic models and CMB. COPREM

allows more insight and offers better control over the

final solution than factor analysis, but also requires

more input information. Since the introduction (W(ahlin,

1993a) COPREM has proven useful in air pollution

studies at very different places and under very different
d.
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conditions, e.g. in Central Greenland (W(ahlin, 1996), in

Northeast Greenland (W(ahlin, 1993b; Heidam et al.,

1999), in Malaysia (W(ahlin et al., 1998), in Denmark

(Swietlicki et al., 1999; W(ahlin et al., 2001), and in

Thailand (Upadhyay et al., 2003).
2. The constrained physical receptor model

The fundamental hypothesis in mathematical receptor

models is that the measured concentrations xij of n

different chemical components in N samples can be

satisfactorily expressed as a sum of contributions from a

small number pðponÞ of sources with a constant

composition,

xijD
X

k

aikfkj : ð1Þ

In Eq. (1) aik are constants representing the relative

composition of the sources (the source profiles), and fkj

are the source strengths found in the different samples.

Index i refers to the n chemical variables, index j refers

to the N samples, and index k refers to the p sources.

The process of solving Eq. (1) implies the search for

source profiles aik and source strengths fkj ; which, by
insertion on the right-hand side of Eq. (1), give results

close to the measured xij : From a physical point of view,

the best solution minimizes w2; given by

w2 ¼
X

j

X
i

ðxij �
P

k aikfkjÞ
2

s2ij
; ð2Þ

where sij is the expected scatter (or uncertainty) of xij :
This is of particular importance for data near or below

the detection limit, and guarantees that high values with

high uncertainties will have a smaller weight in the

fitting process. In general, infinitely many solutions are

equally good in a purely mathematical sense, but the

arbitrariness (the size of the solution space) can be

reduced if physical restrictions are considered. For a

simple linear model like Eq. (1) a fundamental physical

demand is that both aik and fkj must be non-negative.

This demand can be complied with if constraints are

introduced in the minimizing process every time aik and

fkj hit the non-physical barrier. In addition, as the most

important feature, other general constraints can be set

up for the source profiles using knowledge about real

source composition. Thus, in some cases a careful choice

of the constraints can yield a uniquely identifiable

model.

An iterative process is used, in which the minimizing

of w2 is performed solving the systems of linear

equations derived from

qw2

qfc0j
¼ 0 ð3aÞ
and

qw2

qaic0
¼ 0 ð4aÞ

alternately (alternating least squares, introduced by

Yates, 1933). Solving the equations derived from

Eq. (3a) corresponds to the approach in the CMB

model, which presupposes known source profiles, while

Eq. (4a) leads to a multiple regression analysis searching

for better fitting source profiles. The apostrophe on the

source index label (c0) indicates that some sources may
be omitted in order to prevent violation of constraints.

An initial profile matrix aik is set up, in which the

column source vectors are chosen freely. The research

worker can use background knowledge to direct the

iteration to a rational result by choosing, for example,

vectors that are proportional to known source profiles,

or vectors with a single non-zero component used as

tracer, and by setting up constraints that keep parts of

source profiles or whole profiles constant and hereby

prevents unwanted mixing of the source vectors. As

more constraints are added to the hybrid model, it can

be gradually changed from a pure multivariate model to

a pure CMB model.

Each iteration loop thus involves two steps:

1. The source strengths are found for each sample j by

solving the system of linear Eq. (3a), which after

differentiation can be written:

X
k0

X
i

aik0aic0

s2ij

 !
fk0j ¼

X
i

xijaic0

s2ij
: ð3bÞ

First all p sources are used, but if negative elements

are found in the resulting source strength matrix fkj ;
they are replaced by zeros and the affected columns

are recalculated omitting the corresponding sources.

The apostrophes of the indices k0 and c0 indicate that
the number of sources in the individual samples in

this way may be reduced, pjpp:
2. The finally achieved matrix fkj ; with non-negative

elements, is used to calculate the residuals,

Dxij ¼ xij �
X

k

aikfkj ð5Þ

and a correction Daik of the source profile matrix is

calculated by solving the system of linear equations

derived from Eq. (4a),

X
k0

X
j

fk0j fc0j

s2ij

 !
Daik0 ¼

X
j

Dxij fc0j

s2ij
: ð4bÞ

The k0 and c0 apostrophes indicate that the imposed
constraints may reduce the number of sources for the

individual chemical component i: If an element aik is

not allowed to change, the corresponding source is

omitted, pipp: The information about which ele-

ments should be held constant is given by a form
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matrix of the same size as aik; where zero values

indicate that the corresponding element in aik is

constant.

3. The calculation of the matrix Daik is completed by

inserting zeros for the elements that were skipped in

the solution Daik; of Eq. (4b), and the resulting

matrix is added to the original matrix aik to get a

better overall fit. If negative elements are found in the

new aik matrix, zeros replace them, and the affected

rows are recalculated without the corresponding

sources taking the new emerging constraints into

account. The method is a modification and extension

of the NNLS method (non-negativity constrained least-

squares regression, see Lawson and Hanson, 1974).

The iteration is continued until w2 reaches a stagnant

minimum value. The degrees of freedom, approximately

given by

n ¼ Nn �
X

j

pj �
X

i

pi; ð6Þ

depend upon the number of negative values of aik and fkj

found in the last iteration loop, therefore both w2 and n
are determined by the iterative process.

As a special option, the strengths of the first source

(k ¼ 0) can be constrained to constant unity values

(f0j ¼ 1) enabling the use of constant offset values of the

variables according to the equation

xijDxi0 þ
X
k>0

aikfkj : ð7Þ

A code has been written in C-language and compiled

as a DOS executable program to perform the iteration.

As inputs are used three matrices: An n � p profile

matrix containing the initial source vectors, an

n � p form matrix containing information about the

constraints on the profile matrix elements in 0=
Table 1

Weekly mean concentrations with absolute uncertainties (both in ng/m

in the year 2000

Start date Si s(Si) Mn

03-01-00 7 6 0.09

10-01-00 38 8 0.49

17-01-00 29 8 0.29

24-01-00 39 8 0.78

31-01-00 31 8 0.73

]
27-11-00 13 3 0.04

04-12-00 21 4 0.26

11-12-00 46 7 0.42

18-12-00 18 3 0.11

25-12-00 24 4 0.13

The table shows the input format of the data in COPREM. Only a p
fixed/1=free format, and a 2� n � N data matrix

containing the measured values and their absolute

uncertainties. A negative uncertainty is interpreted by

the code as an infinite uncertainty and can be used to

exclude selected data from the fitting process. Output is

a p � N non-negative source strength matrix, an n � p

non-negative profile matrix, plus w2 and n: In the final

calculation a gauge rule is needed for the two factors in

the matrix product in Eq. (1). Here, the strength values

of the individual sources in the source strength matrix

are normalized to unity in average, and, in consequence,

the profile matrix elements will be the average source

contributions. Furthermore, using multiple linear re-

gression, a ‘‘one-factor’’ analysis is performed on the

residues to reveal a possibly ignored source, and the

result is expressed as an extra row in the source strength

matrix and an extra column in the source profile matrix.
3. A simple example

As an illustration of the nature and the use of the

physical receptor model some aerosol data are analysed

here. For the sake of the demonstration a very simple

problem was selected, in which our understanding of the

number of sources and the qualitative nature of the

source profiles is well established. The data are weekly

average concentrations of Si (silicon), Mn (manganese)

and Pb (lead) measured at Station Nord in Northeast

Greenland in the period January–December 2000. The

two dominant sources in the Arctic of these elements are

long-range and local soil erosion in spring and summer

(Si, Mn) and long-range anthropogenic combustion

emissions from Russia and Europe in winter and spring

(Mn, Pb). Si can (to some extent) be considered a tracer

for the soil source, and Pb a tracer for the combustion

source, while Mn has significant contributions from
3) of Si, Mn and Pb at Station Nord in Northeastern Greenland

s(Mn) Pb s(Pb)

0.03 0.05 0.06

0.05 1.54 0.09

0.04 1.02 0.06

0.06 2.32 0.13

0.06 2.32 0.13

0.03 0.16 0.05

0.04 0.73 0.07

0.05 1.16 0.09

0.04 0.22 0.06

0.04 0.41 0.06

art of the table is shown. All the data are plotted in Fig. 4.
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Table 2

The initial source profile matrix and the corresponding form

matrix as set up in the illustrative example

Soil Combustion

Si 277200 40

Mn 1000 0

Pb 16 1

Si 0 1

Mn 1 1

Pb 0 1

The approximate composition of igneous rocks (in ppm) is used

in the soil profile, in which the zeros in the soil column of the

form matrix fix the Si/Pb ratio.

Table 3

Output data

Date Soil Combustion

03-01-00 0.16 0.11

10-01-00 0.36 2.33

17-01-00 0.24 1.52

24-01-00 0.35 3.62

31-01-00 0.23 3.60

^
27-11-00 0.15 0.21

04-12-00 0.22 1.12

11-12-00 0.52 1.74

18-12-00 0.23 0.33

25-12-00 0.27 0.58

Average 1.00 1.00

Source strengths calculated by means of COPREM on basis of

the data summarized in Tables 1 and 2. Only a part of the table

is shown. In the final calculation a gauge rule is needed for the

separation of the two factors in the matrix product in Eq. (1).

Here, the strength values of the individual sources in the source

strength matrix are normalized to unity in average, and, in

consequence, the profile matrix elements (Table 4) will be

normalized to the average source contributions.

Table 4

Output data

Soil Comb

Si 70.224 5.20

Mn 0.266 0.17

Pb 0.004 0.65

Total

The resulting source profiles are the average source contributions

(average=1, see Table 3). w2=chi-square and n=degrees of freedom.

Pðw2 > 77:5; n ¼ 55Þ ¼ 2:4%.
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both sources. A more complicated example of the use of

COPREM in the Arctic, involving 22 elements and 4

sources, has been presented in Heidam et al. (1999).

The format of the input data is shown in Table 1, and

the initial profile matrix and the form matrix defining

the imposed constraints are shown in Table 2. Mixing of
ustion w2 n

16.4

52.1

9.0

77.5 55

(in ng/m3) due to the normalization of the source strengths

The w2 is a little too large to be explained by the statistics alone,

Pb

Mn

Si

Measured points
Projections on sphere

Fig. 1. 3D-view of the data in Table 1. The plotted data were

normalized by division with 7.5� the standard deviation. The

dotted lines indicate intersections with a unit sphere on which

radial projections of the measured points are drawn to improve

the visualization. The three elements Si, Mn and Pb originate

from two sources, a crustal source (soil) and an anthropogenic

source (combustion). All measurements are positioned close to

a 2D subspace (a plane) in the non-negative corner of the

measurement space. The main objective is to find two source

vectors that not only lie in the subspace, but also comply with

physical restrictions, i.e., they must be non-negative, and the

measurements must lie between the vectors.
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Pb

Mn

Si

Measured points
Projections on sphere
Route of iteration

Combustion

Soil

Fig. 3. The course and the final result of the iteration are

guided by the choice of the initial source vectors and the

constraints defined in the form matrix. In the illustrative

example a surplus of Si in the initial combustion vector is

chosen to ensure maximum crustal content in the resulting

combustion vector. The route turns sharply at the end,

P. W (ahlin / Atmospheric Environment 37 (2003) 4861–4867 4865
the soil profile with contributions from the combustion

source is prevented by fixing the Pb/Si-ratio in the soil

profile to the small (essentially zero) ratio found in

igneous rocks. The opposite mixing is not prevented,

because Si cannot be considered to be a true tracer for

the soil source, as Si is also emitted by coal combustion.

The output format of the source strength matrix is

shown in Table 3, and the resulting profile matrix, w2

and n in Table 4. A 3D-plot of the input data is shown in

Fig. 1, where the existence of the two main sources is

readily observed. The first step in the iteration process is

shown in Fig. 2, where the projections of the measured

points on the subspace in the angular interval between

the two initial source profiles are shown. The route of

iteration and the resulting source profiles are shown in

Fig. 3. The fitted values were calculated by Eq. (1) and

plotted together with the measured data in Fig. 4. The

large Si/Pb ratio in the initial combustion profile was

chosen to ensure minimum soil source strength values in

the wintertime when Northeastern Greenland is covered

by snow. A mathematically equivalent solution could be

obtained without any Si in the combustion profile, but

by doing it this way we retrieve valuable information

about the upper possible limit of the Si content in the

combustion source profile.

By inspection of Fig. 4 it is evident that the two

sources are sufficient to make a good fit. The w2 is a little
too large to be explained by the statistics alone, but this
Pb

Mn

Si

Projections of measured points on initial subspace 
Projections on sphere

Fig. 2. First step in the iteration process. Model values are

found by projection of the measured points on the subspace

defined by the initial source vectors (in this case a plane).

Projections outside the field between the vectors are moved to

the nearest point on a vector line.

governed by the non-negativity constraints imposed on the

source strengths. The soil vector follows a route with constant

Pb/Si ratio, defined by the Pb and Si values in the initial soil

profile and the corresponding zeros in the form matrix (see

Table 2).
is probably due to source profile fluctuations in the

sampling period. A closer inspection will reveal that the

Si/Mn ratio is slightly higher in the summer than in the

spring. This indicates that two different soil sources are

at work: long-range soil dust with a lower Si content in

the spring, and local soil with a higher Si content in the

summer.
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Fig. 4. Fits to the data in Table 1. The source contributions (‘Soil’ and ‘Combustion’) were obtained by multiplication of the numbers

in the resulting profile matrix (Table 3) by the numbers in the source strength matrix (Table 4). The fit is the calculated sum according

to Eq. (1).
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