

Particulate Matter: Properties Related to Health Effects

Modelling PM in Europe

A. I. Miranda, C. Borrego and J. Ferreira

Department of Environment and Planning University of Aveiro PORTUGAL

Brussels November 2004

Air Quality Models to...

... simulate the

- transport
- chemical transformation
- deposition of air pollutants

... more recently formation of secondary particles from gaseous precursors and particles dynamics

What kind of models?

There are different models for different applications !!!

According to mathematical approach

- analytical models (gaussian type models)
- statistical models (diagnostic models)
- numerical models (prognostic models: eulerian, lagrangean).

According to air pollution problem

- spatial scale: global, regional, mesoscale, urban, local, microscale
- temporal scale: short-term, seasonal, long-term
- chemical reactions: passive dispersion, photochemical, ...

but computer capacity and experts are also important

As much complex is the model better results could provide, however more resources are needed!!!

Regional Models – some examples
Danish Eulerian Model DEM http://www.dmu.dk/AtmosphericEnvironment/DEM
European Air Pollution Dispersion EURAD/FFA http://www.eurad.uni-koeln.de
 European Operational Smog EUROS Long Term Ozone Simulation LOTOS
Multi-scale Atmospheric Transport and Chemistry MATC http://www.smhi.se/sgn0106/if/meteorologi/match.htm
• REM3/CALGRID, Regional Eulerian Model + California Grid Model

Regional scale models

GEMAC University of Aveiro

	DEM	EURAD	EUROS	LOTOS	МАТСН	REM3C ALGRID
Aerosol Module						
Size distribution						
In-cloud conversion						
Aerosol dry deposition						
Heterogeneous chemistry – N_2O_5 treatment						
Sub-grid deposition correction						
SOA formation						
Primary organic compound						

Regional Models - EURAD

E U R A D – S y s t e m

Some Results – REM3/CALGRID

Some Results – REM3/CALGRID

Urban scale – CITY DELTA

University of Aveiro

MAIN SCIENTIFIC OBJECTIVES:

• What is the influence of local versus regional emission (reductions) on health-relevant metrics for <u>fine particles (PM10, PM2.5)</u> and ozone in urban air?

• How are predictions derived from regional models (e.g. with a spatial resolution of 50*50 km) different from predictions obtained with finer resolved models?

• What is the range of agreement between different scale dispersion models on the level of responses to emission changes?

http://rea.ei.jrc.it/netshare/thunis/citydelta/

Urban scale – CITY DELTA

University of Aveiro

Applications – Mesoscale

Local scale modelling

VADIS

CFD model developed at the University of Aveiro

Simulation domain

- 1000m x 1000m x 60m in Lisbon city centre
- resolution 5m x 5m x 3m
- 29 buildings with an average height of 12 m
- 8 main roads

Results and Discussion

mesoscale modelling

MEMO-PM results – Wind and PM10 concentration fields at 9:00

University of Aveiro

Entrecampos

Air Quality Station

SEMI-EMPIRICIAL MODELS (based on PM measurements)

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

A semi-empirical model for evaluating urban particulate matter concentrations and comparison of model predictions with data of an urban measurement network

University of Aveiro

YTV Environmental Office

Ari Karppinen, Jari Härkönen, Mia Pohjola, Jaakko Kukkonen, Finnish Meteorological Institute (FMI), Air Quality Research, Helsinki, Finland Anu Kousa, Päivi Aarnio Helsinki Metropolitan Area Council (YTV)

Berlin, PM workshop, AK

6/11/2002

