

Particulate Matter and Health in 2020 Are we on the right track?

NEW ASPECTS ON PARTICULATE MATTER MODELLING

Ana Miranda (University of Aveiro) Wilfried Winiwarter (IIASA, Laxenburg and Austrian Research Centers, Vienna)

13 March 2008, Brussels

Scope

Air pollution is a major environmental health problem causing approximately three million deaths per year in the world, as result of exposure to particulate matter

Source to dose assessment

out ...

emission **m**odeling

- Country emissions: obligatory submission to UNECE, EU
 → EMEP inventory
- Event specific (often science-driven) PM inventories for specific urban areas
 → e.g. "City delta" project

inventories provide basis for abatement plans

emep pm inventories

www.emep.int

"City delta" pm inventories

http://aqm.jrc.it/citydelta/ -- inventories are partly openly available

issues in **pm e**mission **m**odelling

- PM size, speciation affects emissions, properties, and effects
- Well-defined primary (combustion) emissions, ill-defined fugitive emissions
- Emission reductions decrease data availability and quality
- Emissions from natural sources

emission vs. Source apportionment Modelling

Austrian PM 10 emissions: Winiwarter et al., 2007 Source apportionment data (AQUELLA, Bauer et al, 2007)

Source to dose assessment

air (PM) **q**uality

how to get data

Air Quality monitoring networks...

- ✓ measuring ambient air pollutants concentrations in time
 ✓ obtaining data at discrete sites (different types of stations)

depending on the location and dimensions of the region to be studied, monitoring data could not be sufficient to characterize PM values of the area or to estimate human exposure.

numerical modelling \rightarrow a complementary tool

air Quality (PM) Modelling

numerical models

... are useful tools for mapping air pollutants along the time (spatial and temporal distribution of PM)

... simulate the

- transport
- chemical transformation
- deposition of air pollutants

... more recently

formation of secondary particles from gaseous precursors and particles dynamics

air quality (PM) modelling

There are different models for different applications !!!

According to air pollution problem

- **spatial scale**: global, regional, mesoscale, urban, local, microscale
- **temporal scale**: short-term, seasonal, long-term
- chemical reactions: passive dispersion, photochemical, ...

but computer capacity and experts are also important

As much complex is the model better results could provide, however more resources are needed!!!

air Quality (PM) Modelling

the complexity to be modelled...

air quality (PM) modelling

applications

n/ Local models

FLUENT aplication

PM₁₀ simulated results for a main avenue in Lisbon city centre

air quality (PM) modelling

applications

Forecasting PM

applications

From mesoscale to local scale

Boundary conditions to VADIS given by a mesoscale simulation with MEMO-PM 28th Feb 2000, 9:00

VADIS results - Wind and PM_{10} concentration fields at 9:00

microenvironment and time-activity pattern of the population

Microenvironments distribution:

27 24

21

18

15

PM₁₀ concentration values inside the domain are above the daily limit value of 50 µg.m⁻³

applications

Lisboa city centre – local scale modelling

Population exposure results

APEI50 obtained field with microenvironments distribution

APEI50 is the

accumulated population exposure index for the population exposed above the concentration of 50 μ g.m⁻³

The importance of the calculation of exposure is justified by 2 main reasons:

- Areas of higher concentrations are not always areas of higher exposure (and vice-versa)

- Two persons living in the same area (similar ambient air quality) may have quite different exposures according to their activity patterns.

applications

Helsinki Metropolitan Area – urban scale modelling

applications

Source to dose assessment

... all together now!

Integrated **a**ssessment **m**odelling

GAINS model

how do iam's Work?

- Integration: covers multiple aspects
- Assessment: includes optimization towards a (well-defined) target
- Models contain sub-models in a parameterized form
 (e.g. source-receptor matrix)

few Operative **E**xamples

- IIASA: GAINS
- Univ. Stuttgart: MERLIN
- RIVM: Image
- Imperial College London
- .

- Cost optimization for a given environmental target
- Target optimization at given costs
- Co-benefits
- •

 \rightarrow IAM's provide answers to policy questions

final remarks

Air quality models provide spatial distribution, where measurements assess the situation at specific points/areas only

- Emissions inventories provide limited information on PM size or chemical composition. Knowledge on emission processes is available we need more interaction!
- All models are useful! Appropriate selection is required, such that model outcome reflects a model's abilities: air quality management, exposure and health estimations, ...
- Legislation on air quality concerns ambient air quality while it is known that it can differ a lot and differently, from place to place, from real exposure to air pollutants, namely PM.
- Air quality models are being applied for scientific purposes, BUT need extension into state-of-the-art 3rd generation models (Eulerian models with aerosol chemistry) on epidemiological studies model coupling or integrated assessment?

Thank You!!!!