MODELLING OF EMISSION IN A ROADSIDE ENVIRONMENT CONFIGURATION

Mia Pohjola¹, Liisa Pirjola^{2,3}, Jari Härkönen¹

¹Finnish Meteorological Institute, Air Quality Research ³University of Helsinki, Department of Physical Sciences ²Helsinki Polytechnic, Dept. of Technology

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

The approach in our ongoing work

Mobile laboratory van measurements: aerosol number concentrations

Model predictions of aerosol number concentrations, and composition

Description of the vehicle emission: Size number distribution

•MONOdisperse representation for particle size distribution: mode limits chosen according to measurement data

- 1st nucleation mode
- 2nd nucleation mode
- Aitken mode
- 1st accumulation mode
- 2nd accumulation mode
- coarse mode

1 nm < d < 7.5 nm

- 7.5 nm < d < 43 nm
- 43 nm < d < 122 nm
- 122 nm < d < 321 nm
- 321 nm < d < 2.5 μm
- d > 2.5 μm

Description of the vehicle emission: Size number distribution from measurements Size composition distribution from literature

- All particles in a mode have the same composition (internally mixed particles)
- 7 variables for mass concentrations per mode:

mode	Ø , nm	N (cm-3)	% of Ntot	m% H2SO4	m% OC	m% EC	m% sea salt	m% miner. dust	m% amm su	m% amm nit
nuc1	4,7	1,81e4	9,5	5	90	5	0	0	0	0
nuc2	9	1,53e5	80,7	5	90	5	0	0	0	0
Ait	36,4	1,65e4	8,7	0	26,8	63,5	0	7,2	0,3	2,2
acc1	102,5	1,97e3	1	0	25,5	62,5	0	8,8	0,3	2,8
acc2	225,5	6,46e1	0,3	0	25,5	62,5	0	8,8	0,3	2,8

Description of the vehicle emission: Size composition distribution from compiled from a variety of **literature**

"Recent findings suggest that the volatile component of diesel particles to 95% consists of unburned lubrication oil." in:

Sakurai, Tobias, Park, Zarling, Docherty, Kittelson, McMurray, Ziemann, 2003. On-line measurements of diesel nanoparticle composition and volatility. Atmospheric Environment 37, 1199-1210.

Norbeck, Durbin, Truex: 1998:

Measurement of Primary Particulate Matter Emissions from Light –Duty Motor Vehicles. Center for Environmental Research and Technology College of Engineering Report. 57 pp.

Characterizing Particulate Emissions from Medium- and Light Heavy Duty Diesel-Fueled Vehicles. Center for Environmental Research and Technology College of Engineering Report. 25 pp.

Shi, Mark, Harrison, 2000. Characterization of Particles from a Current Technology Heavy-Duty Diesel Engine. Environ. Sci. Tech, 748-755.
Kauhaniemi Mari, 2003. Usability of the Air Quality Model CAR-FMI in City Planning. Master's Thesis, University of Oulu, Department of Process and Environmental Engineering, Control Engineering
Laboratory, 87+7 (13) p.

6

Description of dilution from CAR-FMI

In MONO32:

- Emission for 12m, traffic induced turbulence not included, only accumulation of emitted particles according to wind speed
- then 6 m of dilution only (CAR) with background air
- then 12 m of emission, traffic induced turbulence not included, only accumulation of emitted particles according to wind speed
- followed by dilution (CAR) again with background air

The measurement campaign 2/2

- Particle size distribution measurement at a height of 2.4 m:
 - Electrical Low Pressure Impactor: 7 nm 10 μ m (12 channels) (aerodynamic diameter)
 - Scanning Mobility Particle Sizer: 3 50 nm (mobility diameter)
 - Condensation Particle Counter: total number concentration of particles larger than 3 nm
- Meteorological measurements at a height of 10 m (cabin roof):
 - Relative wind speed & direction
 - Temperature, relative humidity
- Global Positioning System:
 - Van speed, driving route

8