

Statistical approach to see if what controls the particle size distribution

- Huge amount of data from three stations
 Hyytiälä 1999-2004
 - Värriö 1999-2004
 - Pallas 1999-2004
- · Huge amount of trajectories
 - 1h resolution back-trajectories (120h) for all three stations each hour through measurement period

Conceptual approach

• Trajectories will spend different time over land before reaching any station dependning on wind speed and transport path.

Each trajectory will spend a certain time over land, and thus over the sources

Natural sources??

Distribution of trajectories

Supporting data

- Each trajectory connected to hourly average size distribution at each receptor station
- In total, the approach result in 9700 transport cases connected to a size distribution and time spent over land

Any attempt to derive source strength of aerosols over land should first focus on the aerosol mass

- Average of observations per hourly increment of time over land:
 - 0.028 µg*m⁻³*h⁻¹ Hyytiälä
 - 0.014 µg*m⁻³*h⁻¹ Värriö & Pallas
- Twice the mass increase at Hyyiälä

Terpene emissions

- Latitude dependent biomass density of spruce and pine over Finland (Laurila and Lindfors, 1999)
- Temperature dependent bulk emissions of monoterpenes (Steinbrecher et al., 1999)
- Emissions of terpenes confined within lowermost 1 km of troposphere
- Accumulated emission along each trajectory during transport

Mass evolution and emitted terpenes

- Better agreement between northerly and southerly stations using emitted terpenes as variable
 - − 0.074 µg*m⁻³*µg_{terp}⁻¹ *m⁻³ Hyytiälä
 − 0.075 µg*m⁻³*µg_{terp}⁻¹ *m⁻³ Vär. & Pal.
- Assuming that lifetimes of terpenes are short (e.g. Hakola et al., 2003) \rightarrow fraction of reacted terpenes found in the particle phase: an indirect measure of the **yield**

However: only "apparent yield" since we omit sinks and possibly other sources of aerosol mass

Further testing: Summer versus Spring & Autumn

i.e. The fractional contribtuion of oxidation products to aerosol mass equally high during all three seasons. Equvalent behaviour for Pallas and Värriö.

Conclusions

- The boreal forest act to establish rapidly a typical number concentration of approximately 1000-2000 cm⁻³
- The condensation growth is shown to be proportional to the natural emissions of monoterpenes (or equivalent substances) giving an size distribution dominated by 50-100 nm particles (the climatically interesting size range for light scattering and as CCN)
- These findings facilitate calculations of the total climate forcing by anthropogenic particles