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ABSTRACT

The study presents a hierarchical means of obtaining well separable training sites that describe
natural vegetation of different management and species composition. The study area is Mols
Bjerge, Denmark, with dry grasslands assigned to one of seven management classes. A June 1997
Compact Airborne Spectrographic Imager image with 11 bands from 400-900 nm was used for
the image analysis. Spectral clustering and canonical discriminant functions (CDFs) showed that
the management classes were not spectrally unique and that spectral subclasses existed. The
recognition of a spectral differentiation within management classes led to a floristical clustering
based on plot scores in ordination space. The result implied that 29% of the test sites were
predicted (by means of their vegetation) to belong to a cluster defined by the floristic composition
of a different management class. The spectral clustering and analysis of CDFs within
management classes and the floristic modelling showed that management classes could be
identified spectrally with respect to their plant species composition. Separability between
management classes and subclasses respectively using the Jeffries-Matusita distance measure
showed that separability was improved in both cases after seed growing using the Mahalanobis
distance and that separability was related to plot scores in floristic ordination space.

1.0 INTRODUCTION

The mapping of major land cover classes by automated classification of remote sensing data is a well-
established technique (Fuller et al., 1994). However, separation within broad land cover classes in terms of
management and floristics is becoming increasingly important, associated with the opportunities offered from
airborne scanners of high spatial and spectral resolution. Classification at such a detailed level involves challenging
discussions of identification of and separation between classes since discrimination of classes along more or less
continuous gradients is a well-known problem not only in the spectral domain but also with respect to the
vegetation communities.

At the same time, vegetation ecologists are increasingly using ordination and multivariate discriminant
analysis in stead of discrete classes when describing floristic variation. Attempts have been made to combine such
methods with spectral analysis (Lewis, 1997; Wessman et al., 1993). These studies, and others (Jacobsen et al.,
1995, Lauver and Whistler, 1993) indicate that both management and biodiversity affect the spectral signature. The
aim of the study is to examine a hierarchical way of identifying grassland classes from their spectral signatures with
consideration to the mutual inter-dependency between management and biodiversity.

* Presented at the Fourth International Airborne Remote Sensing Conference and Exhibition/21st Canadian
Symposium on Remote Sensing, Ottawa, Canada, 21-24 June 1999.
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The study was performed within the DANish Multisensor Airborne Campaign (DANMAC) project, which
includes interdisciplinary studies on various physical and biological conditions and processes using ground,
airborne and spaceborne optical and radar sensors (Groom et al., 1997).

2.0 STUDY AREA

Mols Bjerge (Figure 1) (approx. 15 sq. km) is dominated by open grasslands with occasional scrubs, thickets
and otherwise deciduous forests and coniferous plantations. The dry, uncultivated areas can be divided into seven
management classes: old unimproved grasslands with continuous grazing (class 1), old, unimproved, but derelict
grasslands (class 2), medium aged grassland, previously cultivated, but now with spontaneous dry grassland
vegetation (class 3), young, ex-arable areas with spontaneous grazed vegetation (class 4), young, ex-arable areas
with spontaneous ungrazed vegetation (class 5) 1-5 years old ‘set-a-side’ vegetation dominated by weed species
(class 6), and improved, sown grass leys (class 7).

Seen in a landscape planning perspective, areas of management classes 1 or 2 can be considered as
important for the conservation of biodiversity, class 3 can be considered as potentially important, whereas classes 4
to 7 are less important although potentially useful for wildlife.

Figure 1: Study area Mols Bjerge (inserted top right) and the location of the casi flight line used in the analysis.
Light grey areas are grasslands and agricultural fields, dark areas are forests. Gravel roads transect the flight line.

3.0 DATA

3.1 IMAGE DATA

Compact Airborne Spectrographic Imager (casi) data were acquired over Mols Bjerge, 10th June 1997,
during a DANish Multisensor Airborne Campaign. The study is performed on scan line K3, which is a spatial mode
(2m spatial resolution) 11-band image in the spectral range from 400 to 900 nm that was calibrated to surface
reflectance.

The quality of the spectral and radiometric calibration of the casi data were assessed and it was found that
the radiometric calibration was poor in bands 1 and 2 and that spectral calibration exceeded ± 0.25 nm in the left-
most 135 columns across track due to spectral alignment problems. Bands 1 and 2 were excluded from the analysis
since a large part of the image had negative reflectance in this spectral region. Since it was not known to what
extent the spectral calibration accuracy would affect the spectral classes, initially the entire image was included in
the analysis; subsequent analysis excluded the 135 columns with poor spectral calibration.

A digital elevation model (DEM) and triangular irregular network (TIN) resampling using Delaunay
triangles was applied for georeferencing the scanner data (Jacobsen et al., 1999).

N
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3.2 VEGETATION DATA

Extensive fieldwork was carried out in 1996. All areas, excluding forest clearings, with more than 25%
cover of grasses, forbs and dwarf shrubs were identified and surveyed. 290 areas fell within one of the seven
management classes. Assignment to management class was assessed in the field on the basis of topography and
vegetation. Classes 1, 2 and 3 were distinguished with the help of indicator species for old grasslands of
conservation interest (Ejrnæs and Bruun, 1995). Vascular plant species were recorded using a robust abundance
scale adapted to an inventory of undulating, mainly extensive areas. Simple abundance scoring was made, in terms
of: ‘present with low cover’, ‘frequent with moderate cover’, ‘frequent with high cover over at least part of the area
and ‘high cover over the majority of the area’.

In 1997 thirty 30m by 30m test sites, representative of the seven different management classes, were
placed among the previously surveyed areas, mainly in areas covered by the casi scan-line used in the study. Test
sites were placed in areas with homogeneous vegetation and constant slope and aspect, and was geo-positioned
using differential global positioning system (DGPS). The positions of these test sites were identified in the
georeferenced image from their DGPS coordinates but the image analysis was performed on the non-georeferenced,
roll-corrected image to avoid resampling distortion.

4.0 THEORY AND METHODS

4.1 TRAINING SET GENERATION

Successful supervised classification relies heavily on good training data. Statistically sound training data
are not necessarily obtained when hand-drawn by a human operator. One reason for this is the human inability to
overview multidimensional space. Also, training sets need to be extracted in a consistent way and irrespective of the
operator and the image structure. In this study a semi-automatic algorithm was applied for generation of training
sets from a series of seed points (Flesche et al., 1999). From these points, training classes were grown in a fashion
that ensured spatial and spectral closeness. Spatial closeness was obtained by requesting connectivity. Spectral
closeness was obtained by restricting the spectral distance to the current mean value of the class while growing the
training set. There were enough seed points per class to define an initial training set and to estimate the dispersion
matrix. The dispersion matrix was first used to exclude any outliers in the current training and second, to grow that
training set further using the Mahalanobis distance method.

4.2 TRAINING CLASS CONSISTENCY AND SEPARABILITY

Training data were checked for consistency to make sure that the multivariate data in each assumed class
comprised, in a statistical sense, just one class. For this, a method based on an unsupervised clustering algorithm
was applied: (1) observations within each management class called cluster seeds were selected as a first guess of the
sub-class means; (2) clusters were formed by assigning observations to the nearest seed as measured by Euclidean
distance; (3) after all observations were assigned, new cluster means were calculated. This last step was repeated
until changes in cluster means became zero (or small). The clustering was based on 9 cluster seeds and followed by
a canonical discriminant analysis (Fisher, 1936), which combined the original variables into new orthogonal
variables or ‘canonical discriminant functions’ (CDFs). The CDFs are the best possible linear discriminators
between the sub-classes into which the training data have been clustered. If a scatter plot of the first two CDFs
showed no outliers and no sign of grouping, the training data were considered consistent. Otherwise a number of
spectral subclasses were identified from the CDFs scatterplots linked to an image view of the test sites.

Training data were checked for class separability by applying the Jeffries-Matusita (J-M) (pairwise)
distance between classes i and j , Jij, (or equivalently the Bhattacharyya distance, aij) and the average J-M distance
between all classes, (Matusita, 1966); Ersbøll, 1989). The J-M distance between perfectly separable classes is √2
(1.41).
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4.3 MULTIVARIATE TREATMENT OF FLORISTIC DATA

The untransformed floristic data combining the 1996 and 1997 inventories were subjected to ordination in
order to reduce the dimensionality of the species*plot matrix. Detrended correspondence analysis (DCA) (Hill,
1979) was used with downweighting of rare species and otherwise default options (McCune and Mefford, 1997).
Three ordination axes were extracted and chosen to represent the major floristical gradients present in the data
(Økland, 1990). In order to produce a floristically based clustering of the plots, optimized to reflect the management
classes, a multinomial log-linear model fit was applied (Venables and Ripley, 1997) predicting class membership as
a function of plot scores on the three ordination axes. The modelling was performed in S-Plus 4.5 (S-Plus 4.5) using
multinom and predict.multinom included in the NNET library add-in to S-Plus (Ripley, Unpubl.).

5.0 RESULTS AND DISCUSSION

5.1 MANAGEMENT CLASS SEPARABILITY

J-M distances between management classes 1-7, based on all pixels within all test sites, are shown in Table
1. It is seen from the table that no management class is spectrally perfectly separated from any other class. The best
bands for separation are, in order of importance: 4, 11, 8, 10, 7, 9, 3, 5 and 6. Band 4 (550 nm) is the green peak,
bands 11 (802 nm) and 10 (769 nm) are the NIR shoulder, 8 (715 nm) and 9 (737 nm) are on the red edge and 7
(683 nm) is a chlorophyll absorption band. The separability was only slightly increased beyond these first six bands.

J-M distances were recalculated excluding the areas with calibration in-accuracy exceeding ± 0.25 nm. The
separability between classes was improved and increased until eight bands were included. These eight bands were:
3, 4, 5, 7, 8, 9, 10 and 11. The order of importance was different from above but again band 6, at 650 nm (the back
slope of the green peak), was the poorest for separation between the classes (bands 1 and 2 were excluded from the
analysis). The results indicate that including vegetation indices and/or red edge parameters as additional variables
might improve separability between classes. Generally it is seen that classes 6 and 7 are the two classes that
separate best from the other classes.

Table 1: J-M separability measures between management classes.
All test sites Test sites within 0.25 nm spectral accuracy
Class 1 2 3 4 5 6 7 Class 1 2 3 4 5 6 7
1 0.00 1 0.00
2 1.31 0.00 2 1.39 0.00
3 1.34 1.24 0.00 3 1.35 1.24 0.00
4 1.10 1.28 1.27 0.00 4 1.30 1.24 1.28 0.00
5 1.26 1.14 1.18 1.27 0.00 5 1.37 1.13 1.17 1.20 0.00
6 1.40 1.40 1.38 1.35 1.38 0.00 6 1.41 1.40 1.38 1.36 1.38 0.00
7 1.30 1.36 1.27 1.16 1.33 1.37 0.00 7 1.41 1.39 1.30 1.40 1.39 1.40 0.00

The overall improvement may be indicative of heterogeneity between test sites within the management
classes but it may also reflect that a calibration in-accuracy exceeding ± 0.25 nm has a negative effect on the
classification results. This indication was supported by a match filtering test, in which it was seen that the columns
of a calibration in-accuracy exceeding ± 0.25 nm were assigned to the same endmember irrespective of the
management class. The affected scan lines were excluded leaving 16 test sites for the further analysis.

The separability of the management classes in spectral space is well explained from the ordination diagram
in floristic space (Figure 2). Classes 6 and 7 and classes 1 and 2 have opposing extreme plot scores along DCA1,
whereas the other classes are placed along a gradient. In the spectral space, classes 6 and 7 separate better from
class 1 than class 2 due to the fact that the test site of management class 1 belongs to floristic class 2, whereas the
test site of management class 2 belongs to floristic class 1 (Table 2). Classes 3, 4, and 5 are poorest separated since
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they occupy largely the same space in the ordination diagram but since the floristic centers of the classes are
markedly different, a relatively high J-M distance is found between some classes.

5.2 SUBCLASS IDENTIFICATION

Each management class was clustered into nine spectral classes and CDFs were calculated. Two-
dimensional scatter plots of the spectral clustering linked to image spatial space showed that the management
classes were not spectrally unique and twelve subclasses were identified from the test site data.

A floristically based clustering of the 290 plots reflecting the management classes were approached
applying a multinomial log-linear model fit by feed forward neural nets (Ripley & Venables 1997) to predict class
membership as a function of plot scores on the three ordination axes extracted from the DCA. Figure 2 shows the
distribution of sample plots and their cluster-membership along DCA1 and DCA3, the two axes discriminating best
between the 7 clusters.
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Figure 2: Cluster membership of the 290 field samples and the 30 test sites.

The initial model was refined to optimize floristical similarity of the resulting clusters by fitting the model
a second time using only plots with a probability > 0.5 (predicted from the first model) of membership to one of the
7 management classes. An exception was made for the poorly represented and predicted management class 1 (only
18 plots) where plots with a probability > 0.2 were included in the second model. The second model was then used
to predict the membership of all plots to one of the seven management related floristical clusters. The resulting
floristical clusters were perfectly separable in terms of the three DCA-axes and had a 50% similarity with the
original management classes, implying that 50% of the plots were predicted (by means of their vegetation) to
belong to a cluster defined by the typical floristic composition of a different management class (Table 2).

DCA-3
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Table 2: Cross tabulation showing the relation between field based management class assignment and modelled
floristic class assignment.

Floristic classesManagement
classes 1 2 3 4 5 6 7

1 7 8 0 2 1 0 0
2 9 31 0 1 5 0 1
3 7 8 3 12 1 0 0
4 4 13 3 52 8 3 10
5 2 13 2 23 25 4 1
6 0 0 0 1 4 14 6
7 0 0 0 6 1 2 27

The original 30 test sites had 29% similarity between management classes and floristical clusters,
indicating that management class membership of test sites were less well defined floristically than the average. The
12 spectral subclasses defined from the clustering and CDFs explained the whole variation within the 16 test sites
used in the analysis.

5.3 SUBCLASS SEPARABILITY

The J-M separabilities were calculated between subclasses including all pixels in the test site and after
statistical outliers in the regions of interest were identified and removed and the Mahalanobis distance was used to
grow a spectrally coherent training data set in the image data (Table 3). The first digit in the subclass number refers
to management class, the second digit to the floristic class.

The overall separability between subclasses improved after seed growing; in particular, class 4.1 showed
better results. For class 4.1 93 pixels were included in the training area after seed growing compared to more than
200 in the initial training set. The reduced number of pixels included after seed growing indicates that the test site
belongs to more than one floristic class and that seed growing performs well. Subclass 4.3 and 4.5 have also fewer
pixels included after seed growing but in this case it turns out to be less related to the J-M distance. This indicates
that these two subclasses spectrally dominate their respective test sites, even though the test sites are heterogeneous.

Table 3: J-M distance between subclasses using Mahalonobis distance with χ2 = 0.50.
Subclasses seed grown (χ2 = 0.50)

1.2 2.1 3.2 3.3 3.4 4.1 4.3 4.5 5.1 5.5 6.5 7.7
1.2 0.00
2.1 1.41 0.00
3.2 1.41 1.37 0.00
3.3 1.41 1.41 1.41 0.00
3.4 1.41 1.41 1.41 1.41 0.00
4.1 1.39 1.41 1.41 1.41 1.41 0.00
4.3 1.41 1.41 1.41 1.41 1.41 1.41 0.00
4.5 1.41 1.41 1.41 1.41 1.41 1.41 1.41 0.00
5.1 1.41 1.38 1.14 1.41 1.41 1.41 1.41 1.41 0.00
5.5 1.41 1.41 1.41 1.41 1.41 1.30 1.41 1.41 1.41 0.00
6.5 1.41 1.41 1.41 1.41 1.39 1.41 1.41 1.41 1.41 1.39 0.00
7.7 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 0.00

Table 3 shows that there is a very high separability between the subclasses. Class 1.2 has its smallest J-M
distance to class 4.1, whilst class 2.1 has the smallest distances to 3.2 and 5.1. This may be explained by the fact
that floristic classes 1 and 2 are difficult to separate floristically, as seen from their plot scores in ordination space
(Figure 2). Generally speaking the two subclasses separate well from any other class. Class 3.2 mixes with 5.1 and
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4.1 mixes with 5.5. It is seen from Figure 2 that classes 3, 4 and 5 largely occupy the same floristical space in the
DCA diagram. Classes 6 and 7 have extreme plot scores in ordination space and separates well from every other
class. J-M distance measured between floristic classes alone parallel to the J-M distance between management
classes alone showed that floristic classes were poorer separated than management classes. The spectral signatures
are immediately influenced by the management characteristics of e.g. grazing/non-grazing whereas the effects on
the floristics need years to be established.

6.0 CONCLUSION

The hierarchical approach to define statistically sound spectral subclasses describing management and
species composition is promising. Clustering of data, and definition of spectral subclasses within management
classes using two-dimensional scatterplots of canonical discrimination functions 1 and 2 were well explained by the
species composition of the management class. The floristic clustering governed by management class membership
explained separability between subclasses in spectral space. Separability evaluated using the Jeffrey-Matusita
distance was improved when the training sites were based on seed growing using Mahalanobis distance. The
analysis was based on 16 test sites but despite of the good results a more robust set of data including field measured
spectral signatures of higher spectral resolution and vegetation sampling from the same area is required in order to
verify the indications of this study.

At a management level, classes 1 and 2 of importance for conservation of biodiversity were well separated
from class 6 and 7, dominated by weed species and sown grass leys, in both ordination and spectral space.
Management class 3, potentially important for conservation of biodiversity, and management classes 4 and 5, less
important but still useful for wild life, were less well separated in floristical and spectral space. At a subclass level,
all classes but a few were well separated and in good agreement with the plot scores in ordination space.

A next step in this analysis would be to map the grassland areas. The high quality set of training areas
established from the hierarchical approach shows that a maximum likelihood classifier would map the 12 subclasses
to a high degree of accuracy. Maximum likelihood assigns pixels to a discrete class but floristical and
environmental gradients are seldom discrete leading to a a lack of information regarding the exact conditions of the
areas. Matched filtering could be a better means to extract the floristical variation along environmental gradients
across management classes using the training sets as endmembers. The match filtering would, however, only
perform well if the endmembers are extreme pixels, hence covariance drivers, in spectral space. In any case, field
work should be carried out to add training sets for the remaining 18 combinations fo management classes and
floristic clusters to perform a full mapping of the grassland areas.

The interpretation based on spectral signatures and floristics indicated that the importance of management
overrules the importance of floristics in a remote sensing perspective: the spectral signatures are influenced very
soon after changes in significant management characteristics such as grazing/non-grazing whereas there is a timelag
before the floristic effects of management changes is established. The results look promising in a monitoring
perspective since operative methods for planning of management priorities demand information about not only the
present management and management history but also the dominant plant species of an area. We encourage the
development of methods that take advantage of identifying spectrally unique classes to be interpreted with
continuous as opposed to discrete environmental and floristical data.
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