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ABSTRACT

The main purpose of the study was to investigate if convex geometry and partial unmixing
could be used to map succession stages on grasslands with respect to encroachment. The
study was performed on a Compact Airborne Spectrographic Imager (casi) image acquired in
2 m resolution spatial mode with 11 bands in the spectral range from 396.2-902.6 nm.
Spectral mode image data was used to assess the radiometric and spectral calibration and
consequently the spatial data was spatially and spectrally subset to include 9 bands. The data
were calibrated to surface reflectance and transformed to minimum noise fraction (MNF)
feature space and the spectral dimensionality of the data was evaluated. Pixel purity indexing
(PPI) technique was used to extract the purest pixels in the image from convex geometry
concepts and rotating three-dimensional scatterplots were used to find endmember related to
woody species. Two endmembers were identified: deciduous trees and conifers. Conifers
were highly correlated with shade. Matched filtering or Constrained Energy Minimization
(CEM) was used to map the selected endmembers. Forests with deciduous trees and conifers
had high abundance. Groups of trees on derelict grassland areas where the density and age of
trees were similar to the forests also had high abundance. Individual woody species out in the
open grassland area had high abundance in a few places. Grassland areas with a spectral
signature similar to conifers came out with low abundance and agricultural fields came out as
false positives. It is generally concluded that the image gives the option of mapping
succession at a late encroachment stage whereas individual scrubs at early encroachment
stages tend to be overlooked.

KEY WORDS: Succession, encroachment stage, matched filtering, constrained energy
minimization.

INTRODUCTION

Monitoring of grasslands is an important environmental and ecological issue in Denmark.
Most of the countryside is or has been under plough for centuries and the Nature Protection
Act places large emphasis on protecting the areas that are not cultivated.

One of the main issues to pursue in the monitoring of grasslands is the
succession. One aspect of succession is the encroachment of shrubs and trees over time. If
encroachment proceeds, the open grassland areas vanish and several protected plant species
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will disappear. Accordingly, it is important to register the encroachment stage of grassland in
order to use nature management to prevent the shrubs from taking over completely.

STUDY AREA AND IMAGE DATA

The study area Mols Bjerge is located in the eastern part of Jutland. The area has been
protected by the Nature Conservation Act since 1976. It is a softly undulated moraine
landscape with elevations from 50 to 130 m.a.s.l. Open grassland communities and coniferous
and deciduous forest occupy the landscape. Encroachment occurs on the grasslands at
different intensities and succession stages vary throughout the landscape. In summer 1997
several images were acquired over the area with the casi [7]. The image used in thestudy and
the acquisition parameters is seen in figure 1.

Casi image acquired 10th June 1997, 11:47 local solar time
Location: Mols Bjerge, Denmark, 56 12 48 N, 10 31 58 E
Spatial resolution: 2 m, 512 pixels across track
Altitude: 1300 m
Flight direction: North 1° E

Spectral configuration:
Band FWHM

(nm)
Center wavelength
(nm)

1 16.3 424.35
2 12.8 475.6
3 12.8 525.2
4 12.9 550.05
5 12.8 601.6
6 11.1 650.65
7 11.1 682.85
8 11.2 715.1
9 11.2 736.7

10 11.2 769.1
11 11.2 801.6

Figure 1: Study area, image acquisition parameters and spectral configuration.

METHODS

The method was based on the concepts of convex geometry and partial unmixing [2].
Apparent surface reflectance was retrieved and transformed into minimum noise fraction
(MNF) feature space [5], [10] to assess the data dimensionality. Assuming that only linear
mixing occurred, every pixel in the image was considered a mixture of the purest pixels and a
pixel purity index (PPI) procedure was run on the data. Image endmembers related to woody
species were selected from rotating three-dimensional scatterplots. Matched filtering was used
to partially unmix the data. Calculations were performed by means of ENVI ver. 3.0 [1].
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ASSESSING RADIOMETRIC AND SPECTRAL CALIBRATION

A casi image acquired on the same date but in spectral mode was used for evaluation of the
spectral calibration [8]. The spectral mode was configured to 96 contiguous channels with a
sampling interval of 5.4 nm and a FWHM of 5.8 nm in the spectral region from 394.3-904.3
nm. The spectral mode was recording every 9th pixel across track as a raked image.
Atmospheric modelling showed that the radiometric calibration was poor below 467 nm and
at low signal levels [8]. This affected bands one and two in the spatial data and the two bands
were excluded.

An oxygen-fitting algorithm [3], [4] identifying the band with the deepest
absorption feature due to oxygen at 762 nm was applied on the spectral data [8]. The analysis
showed that there was a problem with spectral calibration and alignment. Mean spectral
calibration precision of 0.25 nm along track was exceeded in the most left 15 columns [8] and
135 pixels in the left part of the spatial image were excluded.

APPARENT SURFACE REFLECTANCE

Apparent surface reflectance was retrieved using a modified empirical line calibration [8].
The intercept in the calibration was obtained from a MODTRAN path radiance spectrum and
the multiplication factors from image spectra and field spectra measured over a parking lot at
the time of the flight.

MINIMUM NOISE FRACTION

MNF transformation whitens the noise and compresses the spectral information to fewer
bands if the data are hyperspectral in nature – that is if the number of bands exceeds the
number of spectral classes in the image. Noise statistics for MNF transformation were
estimated from a subset of the image covering the whole swath and rather homogeneous
grassland areas intersected by a few gravel roads. The noise statistics were calculated
assuming that the spectral shift difference between one pixel and another pixel offset by one
in the horizontal and the vertical direction was due to noise [1].

There was spectral information in every MNF band since spatial features were
recognizable in every band. This may indicate that the image was spectrally underdetermined
and that there may be more spectral variation in the image than the number of spectral bands
can explain.

CONVEX GEOMETRY

The PPI was computed by repeatedly (in our case 20,000 iterations) projecting all
observations in MNF space onto a random unit vector. A threshold of 2.5 digital numbers (1
digital number (DN) being equal to 1 standard devation from the pixel mean) selected the
pixels on the ends of the projected vector. Pixels more extreme than 2.5 DN were considered
to be noise pixels. The total number of times each pixel was marked extreme was calculated
to construct the PPI image. Based on these extreme pixels rotating three-dimensional
scatterplots were used to determine which extreme pixels belonged to which endmember. For
each endmember the spectrum was calculated as the average of the extreme pixels belonging
to that class.
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The land cover types with the highest PPI scores were agricultural fields and
forested areas with coniferous or deciduous trees. Pixels with the very highest scores were
located in the surroundings of two farms and since the farms and the agricultural field were
located in the top and the bottom of the image, the undesired extreme pixels were easily
excluded from the PPI image

ENDMEMBER IDENTIFICATION

A scatterplot of the first three MNFs of the subset PPI image revealed that the shade was an
overall dominating factor in the image. A shade endmember was selected from the scatterplot
of the purest pixels. A match filtering (see below) result of abundance between 0.7 and 1 was
masked from the original image and the PPI was run again. The final two endmembers were
identified as deciduous forest (endmember 1) and coniferous forest (endmember 2) from a
rotating three-dimensional scatterplot of the purest pixels of the second PPI result.

PARTIAL UNMIXING

The partial unmixing method applied is referred to as matched filtering or CEM [11], [13].
CEM builds on the usual linear mixture model

r(x,y) = M αααα (x,y) + n(x,y)

where r(x,y) is an l by 1 vector of observations at location (x,y) (l is the number of spectral
bands), M is an l by p matrix with columns containing the end-member spectra for the p end-
members (M is constant for all (x,y)), αααα(x,y) is a p by 1 vector of abundance for the end-
members at location (x,y), and n(x,y) is an l by 1 vector of noise. In the model the noise is
random with dispersion (or covariance) matrix σ2 I (I is the l by l unit matrix).

We split the M αααα term (we drop (x,y) from the notation) into two terms, one
which is the desired end-member d with a corresponding abundance αp (without loss of
generality we place d in the last column of M), and one which consists of the undesired end-
members U with a corresponding (p−1) by 1 vector, γγγγ, of abundances. U contains the first
(p−1) columns of M and γγγγ contains the first (p−1) elements of αααα. Hence

r = M αααα + n = d αp + U γγγγ + n

We now project r onto w resulting in wTr with the intent to suppress the
presence of the undesired end-members and to highlight presence of the desired end-member.
We do this by minimizing the total output energy, E,

E = Σ (wTr)2

where the sum over the squared projections is taken over all observations. At the same time
we want the output to be one when the desired end-member is projected, wTd = 1. To
minimize E under the constraint wTd = 1 we introduce a Lagrange multiplier 2λ and minimize

F = Σ (wTr)2 − 2λ (wTd −1)
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without constraints. This is done by setting the partial derivatives ∂F/∂w = 0 and ∂F/∂λ = 0.
This leads to

w = R −1 d / dTR −1 d

(with λ = 1 / dTR −1 d) where R = Σ r rT is the total sum of squares matrix.
Other techniques such as orthogonal subspace projection, OSP [9], [6], are also

referred to as matched filtering. As opposed to CEM, OSP and full linear unmixing require
knowledge of all end-member spectra. In [11] it is shown that full linear unmixing and OSP
as described in [6] are identical (except that OSP is computationally slightly more expensive).

RESULTS AND DISCUSSION

Four subsets of the original image and abundance maps of endmembers 1 and 2 are seen in
figure 2. The dark areas/pixels in the RGB images of all the subsets are coniferous forest/trees
and the light red areas are deciduous forest/trees. The very red areas especially evident in
subset 2 are deciduous scrubs.

Subset 1 illustrates that the two endmembers map the two types of forest well.
Subset 2 shows that individual coniferous trees come out well at a late encroachment stage.
Deciduous trees map too, but coherent deciduous scrubs are not mapped. Subset 3 shows
again that trees at a late encroachment stage have high abundance but also that some areas
that are shade come out as endmember 2. Subset 4 shows that only few individual bushes and
trees out in the open grassland areas are mapped. Due to the spectral similarity between the
dry, sparsely vegetated grassland and endmember 1, the endmember is mapped with relatively
high abundance in subset 4.

CEM maps targets from their spectral characteristics without knowing the
spectral characteristics of the background endmember. The match filtering minimizes the
variance of the overall spectral response and gives unit scores only to perfect matches. The
pixels that exist in sufficient quantity and with sufficient spectral contrast are the covariance
drivers of the image statistics. Those spectra will be properly nulled and receive a near-zero
filter response. Pixels that have a significant contrast but only exist in limited quantity will
not be properly nulled and will be mapped as false positives. False positives occur in the
agricultural fields, which get high abundance scores because we consider them as background
(undesired endmembers) even though the fields spectrally speaking are endmembers.

CONCLUSION

Convex geometry concepts and matched filtering work well when the desired endmembers
are the covariance drivers of the image statistics either because of their number or their
spectral characteristics whereas rare objects must have a significant spectral signature to be
identified. In a grassland environment where deciduous and coniferous forests occupy a large
part of the landscape, scrub species and trees that exist only as individuals do not have a
sufficient number or a significant spectral signature to be identified as endmembers. This
influences grassland-monitoring results. Woody species encroaching from the forests map
with high abundance on derelict old grasslands where the species are old (large) or make a
coherent surface cover. Scrubs and trees that do not originate from the forests are not
identified as endmembers and are only mapped if they have a spectral signature similar to the
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Figure 2: Four subsets showing the original image and match filtering results of endmember 1
(conifers) and endmember 2 (deciduous trees). See text for discussion.

RGB = (NIR,G,B) Endmember 1 Endmember 2

Colorramp
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forest species. This puts a limit to the monitoring of the general encroachment stage on
grasslands but the abundance maps of the forest species become an important source for
assessing the importance of biotope references to encroachment on derelict grasslands.
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